首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四阶方阵A﹦(α,γ2,γ3,γ4),JB﹦(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且|A|﹦2,|B|﹦1,则|A-4B|﹦______。
设四阶方阵A﹦(α,γ2,γ3,γ4),JB﹦(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且|A|﹦2,|B|﹦1,则|A-4B|﹦______。
admin
2019-07-01
42
问题
设四阶方阵A﹦(α,γ
2
,γ
3
,γ
4
),JB﹦(β,γ
2
,γ
3
,γ
4
),其中α,β,γ
2
,γ
3
,γ
4
均为四维列向量,且|A|﹦2,|B|﹦1,则|A-4B|﹦______。
选项
答案
54
解析
因为A﹦(α
1
,γ
2
,γ
3
,γ
4
),B﹦(β,γ
2
,γ
3
,γ
4
),所以
A-4B﹦(α,γ
2
,γ
3
,γ
4
)-(4β,4γ
2
,4γ
3
,4γ
4
)﹦(α-4β,-3γ
3
,-3γ
3
,-3γ
4
),
因此有
|A-4B|﹦|α-4β|,-3γ
2
,-3γ
3
,-3γ
4
|﹦-27|α-4β,γ
2
,γ
3
,γ
4
|
﹦-27(|α,γ
2
,γ
3
,γ
4
|-4|β,γ
2
,γ
3
,γ
4
|
﹦-27(|A|-4|B|)﹦54。
本题考查矩阵行列式的求解。可将矩阵的每一列视为一个列向量,先将向量组代入A-4B,利用行列式的性质分解成含有A和B的行列式的表达式,将|A|﹦2,|B|﹦1代入算出|A-4B|。
转载请注明原文地址:https://kaotiyun.com/show/1Uc4777K
0
考研数学一
相关试题推荐
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0,必有
设A是n阶实时称矩阵,证明:必可找到一个数a.使A+aE为对称正定矩阵.
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λ,,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设X1,X2,…,Xn,是同分布的随机变量,且EX1=0,DX1=1.不失一般性地设X1为连续型随机变量.证明:对任意的常数λ>0,有.
设一设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:(1)相继两次故障之间的时间间隔T的概率分布;(2)在设备已无故障工作8小时的情况下,再无故障运行8小时的概率.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
设(2E-C-1B)AT=C-1,其中B是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求A.
设都是正项级数.试证:
已知n阶矩阵A的每行元素之和为a,求A的一个特征值.当k是自然数时,求Ak的每行元素之和.
设位于点(0,1)的质点A对于质点M的引力大小为(k>0为常数,r=|AM|).分别求下列运动过程中A对质点M的引力所作的功(如图9.65):(Ⅰ)质点M沿曲线y=自B(2,0)运动到O(0,0);(Ⅱ)质点M在圆x2+y2=22上由B点沿逆时针方向运
随机试题
根据骨度分寸,除哪项外。两者间距都是9寸
A.运铁蛋白浓度降低B.血清铁浓度下降C.血红蛋白和红细胞比积下降D.血清铁浓度下降、运铁蛋白浓度降低和游离原卟啉浓度升高E.运铁蛋白浓度降低、游离原卟啉浓度升高符合铁减少期的指标为()
(2010年)下列各点中为二元函数z=x3一y3一3x2+3y一9x的极值点的是()。
下列连续梁(T构)的合龙、体系转换和支座反力调整的规定,符合规范的有()。
流转课税是以流转额为课税对象的税类,流转额包括()。
某企业于2015年5月1日采用融资租赁方式从租赁公司租入一台设备,设备款为50000元,租期为5年,到期后设备归企业所有。企业的资金成本率为10%。若租赁公司提出的租金方案有四个:方案A:每年年末支付15270元,连续付5年。方案B:
在某次旅游安全事故中,造成旅游者3人轻伤,经济损失3万余元,该事故属于()。
归因即对自我行为的原因分析,包括三个成分:内外源、稳定性和______。
为了保证其他主机能接入Internet,在如图1-4所示的host1eth1网卡“Internet连接共享”应如何选择?请为图1-2中eth1网卡配置Internet协议属性参数。IP地址:(1);子网掩码:(2);默认网关
WhenIheardthenoiseinthenextroom,Icouldn’tresisthaveapeep.
最新回复
(
0
)