首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则 ( )
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则 ( )
admin
2018-09-25
32
问题
设λ
1
,λ
2
是n阶矩阵A的特征值,α
1
,α
2
分别是A的对应于λ
1
,λ
2
的特征向量,则 ( )
选项
A、当λ
1
=λ
2
时,α
1
,α
2
对应分量必成比例
B、当λ
1
=λ
2
时,α
1
,α
2
对应分量不成比例
C、当λ
1
≠λ
2
时,α
1
,α
2
对应分量必成比例
D、当λ
1
≠λ
2
时,α
1
,α
2
对应分量必不成比例
答案
D
解析
当λ
1
=λ
2
时,α
1
与α
2
可以线性相关也可以线性无关,所以α
1
,α
2
可以对应分量成比例,也可以对应分量不成比例,故排除A,B.当λ
1
≠λ
2
时,α
1
,α
2
一定线性无关,对应分量一定不成比例,故选D.
转载请注明原文地址:https://kaotiyun.com/show/i0g4777K
0
考研数学一
相关试题推荐
已知三维向量空间的一组基是α1=(1,0,1),α2=(1,一1,0),α3=(2,1,1),则向量β=(3,2,1)在这组基下的坐标是__________.
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f′(x0)=g′(x0);(Ⅱ)若x∈(x0-δ,x0+δ,x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性;(Ⅲ)
设曲线积分∮L2[xφ(y)+ψ(y)]dx+[x2ψ(y)+2xy2-2xφ(y)]dy=0,其中L为任意一条平面分段光滑闭曲线,φ(y),ψ(y)是连续可微的函数.(Ⅰ)若φ(0)=-2,ψ(0)=1,试确定函数φ(y)与ψ(y);(Ⅱ)计算沿
设Q(x,y)在Dxy平面有一阶连续偏导数,积分∫L2xydx+Q(x,y)dy与路径无关.t恒有2xydx+Q(x,y)dy,(*)求Q(x,y).
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个规范正交基.
设随机变量X服从标准正态分布N(0,1),令Y=|X|,求Y的概率密度.
设两总体X,Y相互独立,X~N(μ1,60),Y~N(μ2,36),从X,Y中分别抽取容量为n1=75,n2=50的样本,且算得=76,求μ1一μ2的95%的置信区间.
解下列微分方程:(Ⅰ)y″-7y′+12y=x满足初始条件y(0)=的特解;(Ⅱ)y″+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)+y″+y′+y=0的通解.
设f(u,v)具有连续偏导数,且fu(u,v)+fv(u,v)=sin(u+v)eu+v,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
已知某零件的横截面是一个圆,对横截面的直径进行测量,其值在区间(1,2)上服从均匀分布,则横截面面积的数学期望为_____,方差为_______.
随机试题
采用先进的生产工艺可以降低生产成本。()
写出如下图所示的二叉树的中序遍历序列。
以下病变中发生脂肪变的是
根据(建筑工程施工质量验收统一标准)中的规定,对于主控项目中,a、β允许范围为( )。
企业购置的固定资产是其从事生产经营活动的物质基础。因此,购置固定资产支付的资金应在现金流量表中“经营活动产生的现金流量”项目列示。()
以下关于固定制造费用差异分析的表述中,错误的有( )。
我国政府机构与立法机构的关系是()。
消防队员甲在执行灭火任务中,担心被大火毁容,逃离火灾现场。甲的行为()。
Inresponsetoscandalsrockingthestudentloanindustry,theHousehasquicklypassedreformlegislationtorequiremorediscl
•Readthereviewbelowofabookaboutinterviewingjobapplicants.•Aresentences16-22ontheoppositepage’Right’or’Wrong’
最新回复
(
0
)