首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-05-10
111
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
由命题2.5.3.1(3)知只需证明两矩阵相似于同一对角矩阵. 证 记[*],因A为实对称矩阵必可对角化. 由∣λE—A∣=λ
n
一nλ
n-1
=λ
N-1
(λ一n)=0可知A的特征值为n,0,0,…,0(n一1个0特征值)(或由命题2.5.1.3即得),故A~diag(n,0,0,…,0)=Λ.又由∣λE—B∣=(λ一n)λ
n-1
=0得到B的n个特征值为n,0,0,…,0(n一1个零特征值). 当λ=0时,秩(0E一B)=秩(B)=1,则n-秩(0E—B)=n-1,即齐次方程组(0E—B)X=0有n一1个线性无关的解,亦即λ=0时,B有n一1个线性无关的特征向量. 又λ=n时,秩(nE一B)=n一1,则n-秩(nE—B)=n一(n一1)=1,即齐次线性方程组(nE一B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ知存在可逆矩阵P
2
-1
BP
2
=Λ, 于是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B,令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/1VV4777K
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
证明:,其中a>0为常数.
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+0(χ3).
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
求微分方程χy=χ2+y2满足条件y|χ=e=2e的特解.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P-1AP为对角阵.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设产品的需求函数和供给函数分别为Qd=14-2P,Qs=-4+2P若厂商以供需一致来控制产量,政府对产品征收的税率为t,求:(1)t为何值时.征税收益最大,最大值是多少?(2)征税前后的均衡价格和均衡产量.
[2018年]设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则().
随机试题
机关、团体、部队和企事业单位因特殊需要必须租用城市私有房屋时,必须经()批准。
公共关系广告的重要作用是()
阅读下列短文,回答有关问题。阳光的香味林清玄我遇见一位年轻的农夫,在南方一个充满阳光的小镇。那时是春末,一季稻谷刚刚收成,春日阳光的金
《中华人民共和国药典》所用药筛工业筛目数(孔/英寸),下列错误者为
某女,35岁。广州某医院护土,2003年4月3日救治不明原因肺炎患者后,开始出现发热,体温39.5℃,头痛、乏力。查:血常规4.12×109/L。胸片示双肺无异常发现。此患者的诊断是
患者张某,女性,70岁,因脑出血昏迷入院,入院时患者体温38℃,脉搏100次/分,R30次/分,血压200/120mmHg。经药物治疗后血压降160/90mmHg,仍处于昏迷状态。现需鼻饲饮食。应采取的措施是()
甲公司是一家在上海证券交易所挂牌交易的制造类企业,有关股权投资业务如下:(1)2015年1月1日,甲公司以银行存款3000万元从非关联方处取得乙公司60%的股权,能够对乙公司实施控制。当日乙公司可辨认净资产的账面价值为3920万元(其中,股本1800万元
赵青一定是一位出类拔萃的教练。她调到我们大学执教女排才一年,球队的成绩突飞猛进。以下哪项,如果为真,最有可能削弱上述论证?
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈使得f’(ξ)=
TheDemocrats’TradeTroublesLastweekHousespeakerNancyPelosiandCongressmanCharlesRangelshowedgenuineleadershipb
最新回复
(
0
)