首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-05-10
108
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
由命题2.5.3.1(3)知只需证明两矩阵相似于同一对角矩阵. 证 记[*],因A为实对称矩阵必可对角化. 由∣λE—A∣=λ
n
一nλ
n-1
=λ
N-1
(λ一n)=0可知A的特征值为n,0,0,…,0(n一1个0特征值)(或由命题2.5.1.3即得),故A~diag(n,0,0,…,0)=Λ.又由∣λE—B∣=(λ一n)λ
n-1
=0得到B的n个特征值为n,0,0,…,0(n一1个零特征值). 当λ=0时,秩(0E一B)=秩(B)=1,则n-秩(0E—B)=n-1,即齐次方程组(0E—B)X=0有n一1个线性无关的解,亦即λ=0时,B有n一1个线性无关的特征向量. 又λ=n时,秩(nE一B)=n一1,则n-秩(nE—B)=n一(n一1)=1,即齐次线性方程组(nE一B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ知存在可逆矩阵P
2
-1
BP
2
=Λ, 于是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B,令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/1VV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
a,b取何值时,方程组有解?
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设z=z(χ,y)是由f(y-χ,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT.(1)求方程组AX=0的通解;(2)求A的非零特征值及其对应的线性无关的特征向量.
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
设φ(χ)=∫0χ(χ-t)2f(t)dt,求φ″′(χ),其中f(χ)为连续函数.
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。设目前农村人口与城镇人口相等,即。
设(1)用变限积分表示满足上述初值条件的特解y(x);(2)讨论是否存在,若存在,给出条件,若不存在,说明理由.
随机试题
简述专利的基本含义及其特征。
公司2009年签订的购销合同应缴纳的印花税是()元。
在国际竞争演化的要素驱动阶段,企业竞争力的来源主要是本国的()。
甲股份有限公司(以下简称“甲公司”)为上市公司,其相关交易或事项如下。(1)经相关部门批准,甲公司于2015年1月1日按面值发行分期付息、到期一次还本的可转换公司债券200000万元,另支付发行费用3000万元,实际募集资金已存入银行专户。根据可转换公
简要介绍培训项目收费标准核算的方法。
出现下列的情况可能导致死锁的是()。
InOctober2002,GoldmanSachsandDeutscheBank(1)_____anewelectronicmarket(www.gs.com/econderivs)foreconomicindicest
(23)在实验阶段进行,它所依据的模块功能描述和内部细节以及测试方案应在(24)阶段完成,目的是发现编程错误。(25)所依据的模块说明书和测试方案应在(26)阶段完成,它能发现设计错误。(27)应在模拟的环境中进行强度测试的基础上进行,测试计划应在软件需求
希尔排序法属于哪一种类型的排序法______。
Easterisa【B1】______ofoverwhelmingjoy,thejoythat【B2】______life,orrather,thevictoryoflifeoverdeath.Butdoesithav
最新回复
(
0
)