首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
admin
2018-01-30
170
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
选项
答案
本题可转化为证明x
0
,f(x
0
)=∫
x
0
1
f(x)dx。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在x
0
∈(0,1),使得φ
’
(x
0
)=0,即 φ
’
(x
0
)=x
0
f(x
0
)一∫
x
0
1
f(t)dt=0。 也就是x
0
f(x
0
)=∫
x
0
1
f(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/4Uk4777K
0
考研数学二
相关试题推荐
[*]
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
求下列不定积分:
当n为正整数,且nπ≤x
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设矩阵A=(aij)3×3,满足A*=A*,其中AT为A的伴随矩阵,AT为A的转置矩阵.若a11a12,a13为三个相等的正数,则a11为().
随机试题
上井架人员随身携带的小工具必须用安全绳系在身上,()。
患者,男,60岁。咳嗽、痰中带血半年余,吸烟40余年,20支/日。胸部x线片示右上肺近肺门处肿块影。为明确病理诊断,首选的检查是()
招标采购项目是为实现招标采购目标,通过实施满足()等约束条件的一系列措施所作出的一次性努力,是一个具有鲜明项目特点的独特服务过程。
下列资产的折旧费用应计入当期损益的有()。
设函数f(x)=若f(a)>f(-a),则实数a的取值范围是()。
公司金融的三个重要的关注领域是什么?
Youcoulddoit,ifyou______tryhardenough.
下图是校园网某台主机在命令行模式下执行某个命令时用sniffer捕获的数据包。请根据图中信息回答下列问题。该主机上执行的命令是【20】。
微型计算机的主机包括__________。
Readthefollowingpassage.Afterreadingit,youshouldcompletetheinformationbyfillingintheblanksmarked46to50inn
最新回复
(
0
)