首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
用正交变换将二次型f(x1,x2,x3)=x12一2x22一2x32一4x1x2+4x1x3+8x2x3化为标准形,并给出所施行的正交变换。
admin
2018-02-07
30
问题
用正交变换将二次型f(x
1
,x
2
,x
3
)=x
1
2
一2x
2
2
一2x
3
2
一4x
1
x
2
+4x
1
x
3
+8x
2
x
3
化为标准形,并给出所施行的正交变换。
选项
答案
二次型的矩阵为A=[*],特征多项式为 |λE一A|=[*]=(λ一2)
2
(λ+7), 矩阵A的特征值为λ
1
=一7,λ
2
=λ
3
=2。 由(λ
i
E一A)x=0(i=1,2,3)解得特征值λ
i
=一7和λ
2
=λ
3
=2对应的特征向量分别为 α
1
=(1,2,一2)
T
,α
2
=(一2,1,0)
T
,α
3
=(2,0,1)
T
, 由于实对称矩阵的属于不同特征值的特征向量正交,所以先将α
2
,α
3
正交化,即 β
2
=α
2
=(一2,1,0)
T
,β
3
=α
3
一[*](2,4,5)
T
, 再将α
1
,β
2
,β
3
单位化,即 [*] 则二次型x
T
Ax在正交变换x=Qy下的标准形为一7y
1
2
+2y
2
2
+2y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/1Xk4777K
0
考研数学二
相关试题推荐
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
已知函数f(x)=ax3-6ax2+b(a>0),在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.
求在抛物线y=x2上横坐标为3的点的切线方程.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
随机试题
A.纤维素性坏死B.脂肪坏死C.干酪样坏死D.淀粉样变性急性水肿性胰腺炎引起
脾脏转移癌超声图像特征是
肺炎支原体对下列哪些物质敏感
胸外心脏按压的部位是
(2009年)根据恒定流的定义,下列说法中正确的是()。
()是中国特色社会主义制度的最大优势,是实现经济社会持续健康发展的根本政治保证。
赵某担任甲上市公司总经理,并持有该公司股票10万股。钱某为甲公司董事长兼法定代表人。2011年7月1日,钱某召集甲公司董事会,9名董事中有4人出席,另有1名董事孙某因故未能出席,书面委托钱某代为出席投票;赵某列席会议。会上,经钱某提议,出席董事会
德国心理学家苛勒采用“接竿实验”和“叠箱实验”对黑猩猩的问题解决行为进行了一系列的研究,从而提出了学习的()
函数y=xcosx在(-∞,+∞)内是否有界?又问当x→+∞时这个函数是否为无穷大?为什么?用Mathematica作出图形并验证你的结论.
CREATEDATABASE命令用来建立
最新回复
(
0
)