首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
admin
2021-11-09
54
问题
设α是n维单位列向量,A=E-αα
T
.证明:r(A)<n.
选项
答案
A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
.αα
T
,因为α为单位列向量,所以α
T
α=1,于是A
2
=A.由A(E-A)=O得r(A)+r(E-A)≤n,又由r(A)+r(E-A)≥r[A+(E-A)]=r(E)=n,得r(A)+r(E-A)=n.因为E-A=αα
T
≠0,所以r(E-A)=r(αα
T
)=r(α)=1,故r(A)=n-1<n.
解析
转载请注明原文地址:https://kaotiyun.com/show/1cy4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,]上连续,在(0,)内可导,证明:存在ξ,η(0,),使得
设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
设0<a<1,证明:方程arctanχ=aχ在(0,+∞)内有且仅有一个实根.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则求α1,α2,α3,α4,β的一个极大无关组.
已知,求a,b的值。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设A是m×n矩阵,B是n×m矩阵,则()。
随机试题
著作权是指作者或著作权人对()()()。
省、自治区、直辖市的代表名额基数为350名,省、自治区每15万人可以增加1名代表,直辖市每2.5万人可以增加1名代表;但是代表总名额不得超过_________。
业主可向承包商进行索赔的情形包括( )。
根据《汽车金融公司管理办法》,汽车金融公司可从事的业务有()。
各种贷款的审批权限,根据各种贷款办法的规定和各省、自治区、直辖市、计划单列市分行的规定办理。各经办行内部的审批程序由()规定。
下列属于宏观调控措施的有()。
宪法与法律的最主要区别是()。
阅读下文。回答106—110题。何谓文化?向来狭义的解释,只指学术技艺而言,其为不当,自无待论。说得广的,又把一切人为的事都包括于文化之中,然则动物何以没有文化呢?须知文化正是人之所以异于动物的。其异点安在呢?凡动物,多能对外界的刺激而起反应,亦多
A、Helivedasimpleandlonelylife.B、Heusuallydidnotwearanything.C、Hedivorcedandnevermarriedagain.D、Hetraveledwi
LoveAroundtheWorldItwasanunsettingnightattheAfricanbarandRichardBlaine,37,wasespeciallynervous.Clients
最新回复
(
0
)