首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求抛物面z=1+x2+y2的一个切平面,使得它与该抛物面及圆柱面(x一1)2+y2=1所围成的体积最小,试写出切平面方程,并求出最小体积.
求抛物面z=1+x2+y2的一个切平面,使得它与该抛物面及圆柱面(x一1)2+y2=1所围成的体积最小,试写出切平面方程,并求出最小体积.
admin
2020-03-05
26
问题
求抛物面z=1+x
2
+y
2
的一个切平面,使得它与该抛物面及圆柱面(x一1)
2
+y
2
=1所围成的体积最小,试写出切平面方程,并求出最小体积.
选项
答案
设M
0
(x
0
,y
0
,z
0
)是抛物面上的任意一点,则该点处的切平面方程为[*] 即2x
0
(x一x
0
)+2y
0
(y一y
0
)一z一(1+x
0
2
+y
0
2
)]=0. 于是, z=2x
0
x+2y
0
y+1一x
0
2
一y
0
2
. 由于该立体在xOy坐标平面上的投影区域为D={(x,y)|(x一1)
2
+y
2
≤1},则所围成的体积为 [*] 由于驻点的唯一性,根据问题的实际意义,体积V确有最小值.故当x
0
=1,y
0
=0时,体积V达到最小[*] 此时,切平面方程为2(x—1)一(z一2)=0,即2x—z=0.
解析
本题主要考查抛物面上的任意一点的切平面方程,切平面与抛物面及圆柱面所围成的体积.
得到体积公式中的被积函数的表达式是本题的关键所在.
转载请注明原文地址:https://kaotiyun.com/show/1fS4777K
0
考研数学一
相关试题推荐
设X,Y为两个随机变量,且,则P{max(X,Y)≥0)=__________.
设a,b,c为非零向量,且a=b×c,b=c×a,c=a×b,则|a|+|b|+|c|=()
设f(x,y)在(0,0)的某邻域内连续,且满足,则f(x,y)在(0,0)处().
累次积分等于()
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
下列函数中在[-1,2]上定积分不存在的是
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
[2015年]设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3.当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[x)]必有间断点.②[φ(x)]2必有间断点.③[φ(x)]没有间断点.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后不放回.
随机试题
我最怜君中宵舞,________。(《贺新郎.同父见和再用韵答之》
以下语言中属于高级语言的是()。
霍奇金淋巴瘤最具诊断意义的细胞是()。
关于房地产经纪直营连锁与特许加盟连锁经营模式的比较,下列说法中正确的是()。
一台10/0.4kV容量为0.63MV.A的星形一星形连接的配电变压器,低压侧中性点直接接地,请问下列哪几项保护可以作为其低压侧单相接地短路保护?()
风险揭示书的内容和格式由()制定。
下图为某河流入海径流量和输沙量的逐年变化示意图。读图,回答下列问题。比较1984年以来径流量和输沙量的变化趋势,可以看出流域内()。
下列不都属于我国国家级非物质文化遗产的是()。
已知A=,求An.
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】______shouldbemade
最新回复
(
0
)