首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2019-04-08
52
问题
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
选项
答案
因f(x),g(x)在(a,b)上连续,不妨设存在x
1
≤x
2
(x
1
,x
2
∈[a,b]),使f(x
1
)=M=g(x
2
),其中M为f(x),g(A)在[a,b]上相等的最大值.令F(x)=f(x)一g(x).若x
1
=x
2
,令η=x
1
,则F(η)=f(x
1
)一g(x
1
)=M—M=0;若x
1
<x
2
,则 F(x
1
)=f(x
1
)一g(x
1
)=M—g(x
1
)≥0, F(x
2
)=f(x
2
)一g(x
2
)=f(x
2
)一M≤0.又F(x)在[a,b]上连续,由介值定理知,存在η∈(x
1
,x
2
) [*] (a,b)使F(η)=0. 由题设,有F(A)=f(B)一g(A)=0,F(B)=f(B)一g(B)=0.对F(x)分别在[a,η]、 [η,b]上使用罗尔定理得到:存在ξ
1
∈(a,η),ξ
2
∈(η,b)使F’(ξ
1
)=0,F’(ξ
2
)=0.又因F’(x)可导,对F’(x)在[ξ
1
,ξ
2
]上使用罗尔定理得到:存在ξ∈(ξ
1
,ξ
2
) [*] (a,b)使得 F’’(ξ)=0, 即 f’’(ξ)=g’’(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/cx04777K
0
考研数学一
相关试题推荐
已知齐次线性方程组同解,求a,b,c的值.
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ε,η,ξ∈(1,2),使得.
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
求微分方程x2y’+xy=y2满足y丨x=1=1的特解.
设随机变量X的分布函数为已知求|Y|的分布函数.
求过点(1,2,3),与y轴相交,且与直线x=y=z垂直的直线方程.
设a>0,讨论方程aex=x2根的个数.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Zn=1/nXi2近似服从正态分布,并指出其分布参数.
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=.求正交变换X=QY将二次型化为标准形;
随机试题
(2018年省属)《刘宾客嘉话录》记载:古代洛阳一个寺庙僧房中有一个磬,经常自鸣,僧人因此忧患成疾,他的朋友得知后,用锉刀将磬锉了数处,磬就不再自鸣了。原来是磬与寺钟的频率暗合,所以寺里击钟,磬便自鸣。上述材料蕴含的哲理是()
实物资本
WHYSHOULDanyonebuythelatestvolumeintheever-expandingDictionaryofNationalBiography?Idonotmeanthatitisbad,as
"以泻代清"治则的代表方是
万吨级船舶停靠的岸线水深为()m。
关于市政工程项目职业健康安全管理体系,说法错误的是()。
设=__________
TransportandTrade1Transportisoneoftheaidstotrade.Bymovinggoodsfromplaceswheretheyareplentifultoplaceswher
ThewetvolcanicashthatcoveredaMayavillageinCentralAmericainaboutAD595coatedandpreservedeverydayobjectsbeans,
A、Buyanewwatch.B、Gotobedearlier.C、Seeadoctor.D、Changehisjob.B推断题。从对话中可以得知男士将在下周结束课题的研究,可以恢复到正常的作息,由此可以判断他可能早入睡。
最新回复
(
0
)