首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2019-04-08
25
问题
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
选项
答案
因f(x),g(x)在(a,b)上连续,不妨设存在x
1
≤x
2
(x
1
,x
2
∈[a,b]),使f(x
1
)=M=g(x
2
),其中M为f(x),g(A)在[a,b]上相等的最大值.令F(x)=f(x)一g(x).若x
1
=x
2
,令η=x
1
,则F(η)=f(x
1
)一g(x
1
)=M—M=0;若x
1
<x
2
,则 F(x
1
)=f(x
1
)一g(x
1
)=M—g(x
1
)≥0, F(x
2
)=f(x
2
)一g(x
2
)=f(x
2
)一M≤0.又F(x)在[a,b]上连续,由介值定理知,存在η∈(x
1
,x
2
) [*] (a,b)使F(η)=0. 由题设,有F(A)=f(B)一g(A)=0,F(B)=f(B)一g(B)=0.对F(x)分别在[a,η]、 [η,b]上使用罗尔定理得到:存在ξ
1
∈(a,η),ξ
2
∈(η,b)使F’(ξ
1
)=0,F’(ξ
2
)=0.又因F’(x)可导,对F’(x)在[ξ
1
,ξ
2
]上使用罗尔定理得到:存在ξ∈(ξ
1
,ξ
2
) [*] (a,b)使得 F’’(ξ)=0, 即 f’’(ξ)=g’’(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/cx04777K
0
考研数学一
相关试题推荐
设随机变量X的概率密度为f(x)=令随机变量(Ⅰ)求Y的分布函数;(Ⅱ)求概率P{X≤Y}。
设f1(x)为标准正态分布的概率密度,f2(x)为[一1,3]上均匀分布的概率密度,若为概率密度,则a,b应满足()
已知一条抛物线通过x轴上两点A(1,0),B(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
证明方程lnx=在(0,+∞)内有且仅有两个根.
设随机变量X在[0,π]上服从均匀分布,求Y=sinX的密度函数.
设a=(a1,a2,…an)T,a1≠0,A=aaT,(1)证明λ=0是A的n-1重特征值;(2)求A的非零特征值及n个线性无关的特征向量.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成a的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
设二次型f(x1,x2,x3)=XTAX,tr(A)=1,又B=且AB=O.求正交矩阵Q,使得在正交变换x=QY下二次型化为标准形.
设y=,求y(n)(n为正整数)。
随机试题
A、Ithasbecomewidespread.B、Itisnotnecessaryforlife.C、IthasbeenaroundsincetheGardenofEden.D、Therearebothgood
处方正文的审查主要有以下方面()
生产经营单位主要负责人在本单位发生重大生产安全事故时,( ),给予降职、撤职的处分,对逃匿的处15日以下拘留;构成犯罪的,依照刑法有关规定追究刑事责任。
风险加权资产不包括()。
针对时间序列的水平分析指标有()。
(2011年)某公司股票的当前市价为10元,有一种以该股票为标的资产的看跌期权.执行价格为8元,到期时间为三个月,期权价格为3.5元。下列关于该看跌期权的说法中,正确的是()。
浣花溪记钟惺出成都南门,左为万里桥。西折纤秀长曲,所见如连环、如块,如带,如规,如钩;色如鉴、如琅歼,如绿沉瓜,窈然深碧,潆回城下者,皆浣花溪委也。然必至草堂,而后浣花
(2010年福建.春.97)请选择你认为最为合理的一项,来填补所给数列的空缺项,使之符合原数列的排列规律:
A、 B、 C、 B图片中为三种交通工具,因此只要听清句中出现的交通方式状语bybus即可知选[B]。
Theproblemofchildrenviolencehasbeendiscussedthoroughlyinthewakeoflastweek’stragedyinArkansas.Somediscussions
最新回复
(
0
)