首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2019-04-08
54
问题
[2007年] 设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(A)=g(A),f(B)=g(B),证明:存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
选项
答案
因f(x),g(x)在(a,b)上连续,不妨设存在x
1
≤x
2
(x
1
,x
2
∈[a,b]),使f(x
1
)=M=g(x
2
),其中M为f(x),g(A)在[a,b]上相等的最大值.令F(x)=f(x)一g(x).若x
1
=x
2
,令η=x
1
,则F(η)=f(x
1
)一g(x
1
)=M—M=0;若x
1
<x
2
,则 F(x
1
)=f(x
1
)一g(x
1
)=M—g(x
1
)≥0, F(x
2
)=f(x
2
)一g(x
2
)=f(x
2
)一M≤0.又F(x)在[a,b]上连续,由介值定理知,存在η∈(x
1
,x
2
) [*] (a,b)使F(η)=0. 由题设,有F(A)=f(B)一g(A)=0,F(B)=f(B)一g(B)=0.对F(x)分别在[a,η]、 [η,b]上使用罗尔定理得到:存在ξ
1
∈(a,η),ξ
2
∈(η,b)使F’(ξ
1
)=0,F’(ξ
2
)=0.又因F’(x)可导,对F’(x)在[ξ
1
,ξ
2
]上使用罗尔定理得到:存在ξ∈(ξ
1
,ξ
2
) [*] (a,b)使得 F’’(ξ)=0, 即 f’’(ξ)=g’’(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/cx04777K
0
考研数学一
相关试题推荐
证明下列不等式:(Ⅰ)dx<π;(Ⅱ)
证明方程lnx=在(0,+∞)内有且仅有两个根.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ε,η,ξ∈(1,2),使得.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u3-5xy+5u=1确定.求.
设函数z=f(μ),方程μ=φ(μ)+∫yxP(t)dt确定μ为x,y的函数,其中f(μ),φ(μ)可微,P(t),φ’(μ)连续,且φ’(μ)≠1,求.
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(Y)=9,ρXY=,用切比雪夫不等式估计P{|X+Y一3|≥10}.
设随机变量X与Y相互独立,X的概率分布为P{x=i}=(i=一1,0,1),Y的概率密度为记Z=X+Y(Ⅱ)求Z的概率密度fZ(z).
设直线L:及π:x-y+2z-1=0.求L绕y轴旋转一周所成曲面的方程.
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放同,求第二次抽取次品的概率.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:不超过三次取到次品.
随机试题
小儿病危重,其食指可显现为
烧伤患者,高热灼手,汗多气粗,口渴头痛烦躁不安,舌红绛苔黄,脉洪数。其证型是
关于犯罪形态,下列哪种说法是正确的?
设函数f(x)在(-∞,+∞)上是偶函数,且在(0,+∞)内有f’(x)>0,f’’(x)>0,则在(-∞,0)内必有()。
如果当前的证券价格不仅反映了历史价格信息和所有公开的价格信息,该市场属于()。
对于长文档,使用键盘快速移动光标至文件首的操作是()。
Whatrhetoricdeviceisusedinthesentence"Manyhandsmakelightwork"?
材料 近日,特拉维夫大学宣布该学校实验室3D打印出了一颗“心脏”,该心脏不仅具有外形,还有细胞、血管和其他支撑结构,甚至可以像心脏一样收缩,但长度只有2.5厘米。该实验团队负责人说:“与过去相比,这项研究成果的突破点在于,这不仅是一个外观打印的心脏,而
某班级53名学生的物理成绩平均分为83分,标准差为7分,测验的信度为0.51。若小叶考试成绩为81分,那么在0.05的显著水平上,其真分数应该介于什么范围?()
RocketRenaissanceTheEarofPrivateSpaceflightIsAbouttoStartBackgroundTwoyearsago,peoplewitnessedthefirstspa
最新回复
(
0
)