首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设函数f(x)连续,且f'(0)>0,则存在δ>0,使得( ).
[2004年] 设函数f(x)连续,且f'(0)>0,则存在δ>0,使得( ).
admin
2021-01-19
34
问题
[2004年] 设函数f(x)连续,且f'(0)>0,则存在δ>0,使得( ).
选项
A、f(x)在(0,δ)内单调增加
B、f(x)在(一δ,0)内单调减少
C、对任意x∈(0,δ)有f(x)>f(0)
D、对任意x∈(一δ,0)有f(x)>f(0)
答案
C
解析
利用极限的保号性判别之.
由f'(0)>0知,f'
+
(0)=
>0,又由极限的保号性知,在点x=0的某个去心邻域上必有
>0,即存在某个δ>0,使x∈(0,δ),有
>0.而x>0,从而f(x)一f(0)>0,即f(x)>f(0).仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/1v84777K
0
考研数学二
相关试题推荐
已知α=(1,1,-1)T是矩阵A=的特征向量,则x=_____.
设函数z=z(x,y)由方程(z+y)2=xy确定,则=_____________.
三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0的通解为y=___________.
没A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2分别是A的对应于λ1,λ2的特征向量,证明ξ1+ξ2不是A的特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
平面曲线L:绕z轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
已知A=(aij),B=(bij)m×n且有关系bij=aij+aijbik(i,j=1,2,…,n).则下列关系式正确的是().
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
随机试题
通过载体中微生物的作用,将废水中的有毒物质分解、去除,达到净化目的。()
下述关于动脉粥样硬化性固缩肾的叙述中哪一项是错误的
妊娠早期的黑加征(Hegar’ssign)是指
2型糖尿病的主要缺陷为
一项糖尿病筛检试验的结果如下:糖尿病筛检试验筛检试验 糖尿病病人 非糖尿病病人 合计尿糖 血糖+ - 14 10 24- + 33 11 44+ + 117
当进近灯具或其支柱本身不够明显时,应涂上有颜色的油漆,颜色可为()。
按照《巴塞尔协议》的规定,商业银行总资本与加权风险总资产的比率不得低于()。
下列事项中,会导致公司资本成本降低的有()。
2015年9月1日,周某向梁某借款50万元,双方签订了借款合同,借款期限1年,年利率为24%。甲公司财务部门经理吴某以财务部门名义为周某的该借款提供担保,与梁某签订了一份加盖甲公司财务部门章的保证合同。借款期限届满后,周某无力清偿借款本息。2016年10月
_____(在某些领域劳动力短缺)willgiveworkersmorerightstodemandhigherwages.
最新回复
(
0
)