首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2019-08-06
69
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY,化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为f=X
T
AX 其中 [*] 所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4),解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得 [*] 由λ
3
=4时,由(4E-A)X=0得 [*] 显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1wJ4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+αt,β+α2,…,β+αt线性无关.
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:
设连续非负函数f(x)满足f(x)f(-x)=1,则=______.
设随机变量X满足|X|≤1,且,在{-1<X<1}发生的情况下,X在(-1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
两名射手各向自己的靶独立射击,直到有一次命中时该射手才(立即)停止射击.如果第i名射手每次命中概率为pi(0<pi<1,i=1,2),则两射手均停止射击时脱靶(未命中)总数的数学期望为_________.
求函数F(x)=∫01(1一t)|x一t|dt(0≤x≤1)的凹凸区间.
设正态总体X~N(μ,σ2),X1,X2,…,Xn为来自X的简单随机样本,求证:
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为与S2,且X~B(1,p),0<p<1.试求:的概率分布;
(1992年)设,其中f(x)为连续函数,则等于()
随机试题
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacetheminnursinghomes.Theyareleftinthe【C1】
A、Herrigoroustrainingindeliveringeloquentspeeches.B、Herlifelongcommitmenttodomesticandglobalissues.C、Hewidesprea
关于睾丸肿瘤的论述,下列哪项是正确的
女,20岁,近1个半月来干咳伴有低热,自觉乏力。听诊右上锁骨下区有固定的湿啰音。怀疑其肺结核。病人在治疗过程中,判断结核化疗效果,最重要的指标是()。
女性,25岁,未婚,妇科检查发现右侧附件区4cm囊性包块,活动佳。血清CA12520U/ml,B,型超声为单房囊性肿中物,此例最可能的诊断是
患者心中烦热,急躁失眠,口舌糜烂疼痛,口渴,舌红,脉数,经诊断为()。
双代号网络计划中,如果计划工期等于计算工期,且工作i-j的结束节点j在关键线路上,则工作i-j的自由时差( )。
知情权是指公民有权知道他应该知道的事情,国家应该最大限度地确认和保障公民知悉、获取信息的权利,尤其是政务信息的权利。根据上述定义,下面与知情权无关的是()。
在考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好三个关联表对象“tStud”“tCourse”和“tScore”,以及表对象“tTemp”。试按以下要求完成设计。创建一个查询,查找5号入校的学生,显示其“学号”“姓名”“性别”
A、Shegetsillatthesametimeeveryyear.B、Shedoesn’tgetenoughexercise.C、Sheoftenhasdifficultysleeping.D、She’ssick
最新回复
(
0
)