首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2019-08-06
41
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY,化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为f=X
T
AX 其中 [*] 所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4),解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得 [*] 由λ
3
=4时,由(4E-A)X=0得 [*] 显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1wJ4777K
0
考研数学三
相关试题推荐
设求a,b及正交矩阵P,使得PTAP=B.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设A,B是两个随机事件,P(A|B)=0.4,P(B|A)=0.4,=0.7,则P(A+B)=______
设f(x)=a1ln(1+x)+a21n(1+2x)+…+an1n(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex一1|.证明:|a1+2a2+…+nan|≤1.
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果EX=μ,DX=σ2,试证明:Xi一(i≠j)的相关系数p=一;
计算下列函数指定的偏导数:设u=f(2x—y)+g(x,xy),其中f具有二阶连续导数,g具有二阶连续偏导数,求;
计算二重积分ydσ,其中D是两个圆:x2+y2≤1与(x一2)2+y2≤4的公共部分.
已知点A(3,-1,2),B(1,2,-4),C(-1,1,2),试求点D,使得以A,B,C,D为顶点的四边形为平行四边形.
设D是xOy平面上以(1,1),(-1,1),(-1,一1)为顶点的三角形区域,D1为区域D位于第一象限的部分,则(xy+cosxsiny)dσ等于().
随机试题
保本基金投资者可以在持有至到期前获得本金保证或收益保证。( )
建筑高度超过100m且标准层面积超过3000m2的公共建筑的屋顶宜设直升机停机坪或供直升机救助的设施。()
精密、复杂器械的清洗和有机物污染较重器械的清洗步骤为
()的发生标志着室内火灾进入充分发展阶段。
进行杠杆收购时,收购方的自有资金和外部资金的比例,通常不需考虑()。
材料1:习近平总书记在参观《复兴之路》展览时指出,“实现中华民族伟大复兴,就是中华民族近代以来最伟大的梦想。”这个梦想,凝聚了几代中国人的夙愿,体现了中华民族和中国人民的整体利益,是每一个中华儿女的共同期盼。历史告诉我们,每个人的前途命运都与国家和民族的前
电视艺术体现了现代科学技术与艺术的结合,结合具体案例说明并做分析。
Scientistsworkingonaproblemdonotknowandsometimescan’tevenguesswhatthefinalresultwillbe.LateonFriday,8Nove
"Equalpayforequalwork"isaphraseusedbytheAmericanwomenwhofeelthattheyareunfairlytreatedbysociety.Theysayi
A、Decreasingthestockforfood.B、Adjustingthefoodproductionscale.C、Cultivatingmorelandstogrow.D、Encouragingspeculat
最新回复
(
0
)