首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数集合V3={α=(a2x2+a1x+a0)ex|a2,a1,a0∈R)对于函数的线性运算构成3维线性空间.在V3中取一个基α1=x2ex,α2=xex,α3=ex,求微分运算D在这组基下的矩阵.
函数集合V3={α=(a2x2+a1x+a0)ex|a2,a1,a0∈R)对于函数的线性运算构成3维线性空间.在V3中取一个基α1=x2ex,α2=xex,α3=ex,求微分运算D在这组基下的矩阵.
admin
2020-11-13
37
问题
函数集合V
3
={α=(a
2
x
2
+a
1
x+a
0
)e
x
|a
2
,a
1
,a
0
∈R)对于函数的线性运算构成3维线性空间.在V
3
中取一个基α
1
=x
2
e
x
,α
2
=xe
x
,α
3
=e
x
,求微分运算D在这组基下的矩阵.
选项
答案
D(α
1
)=2xe
x
+x
2
e
x
=α
1
+2α
2
=(α
1
,α
2
,α
3
)[*] D(α
2
)=e
x
+xe
x
=α
2
+α
3
=(α
1
,α
2
,α
3
)[*],D(α
3
)=e
x
=α
3
=(α
1
,α
2
,α
3
)[*] 所以D(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 从而可得微分运算D在基α
1
,α
2
,α
3
下的矩阵为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/1xx4777K
0
考研数学三
相关试题推荐
(1991年)试证明函数在区间(0,+∞)内单调增加.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(98年)设矩阵A=矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使.B与A相似;并求七为何值时,B为正定矩阵.
一商家销售某商品的价格满足关系式P=7-0.2x(万元/吨),x为销售量(单位:吨).商品的成本函数是C=3x+1(万元).t为何值时,政府税收总额最大?
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2010年]设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则().
[2008年]设银行存款的年利率为r=0.05,并依年复利计算,某基金会希望通过存款A万元,实现第一年提取19万元,第二年提取28万元,…,第n年提取(10+9n)万元,并按此规律一直提取下去,问A至少应为多少万元?
(16年)设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(Ⅰ)求需求函数的表达式;(Ⅱ)求p=100万元时的边际收益,并说明其经济意义.
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,,若f(x,y)在D内没有零点,则f(x,y)在D上().
随机试题
直肠癌根治术是否保留肛门,主要决定于
削痂的主要适应证是
现有两个互斥的投资方案A和B,A方案的投资为1000万元,年净收益为200万元,寿命期为8年;B方案的投资为1800万元,年净收益为280万元,寿命期也为8年,则增量投资收益率应为( )%。
当已知未成年人的个人隐私涉及()时可以允许相关人员开拆、查阅。
不属于普通高中美术课程基本理念的一项是()
2015年全国规模以上工业企业实现利润总额63554亿元,比上年下降2.3%;实现主营活动利润58640.2亿元,比上年下降4.5%。2015年12月份,规模以上工业企业实现利润总额8167.2亿元,同比下降4.7%,降幅比11月份扩大3.3个百分点。
LastyearIreadafrighteningstudyshowingthatpre-schoolerandkindergartenchildrennolongerbelievetheycansingsongs.
Readthearticlebelowaboutgoodsreturnedbycustomerstomailordercompanies.Choosethebestwordorphrasetofilleac
Whatwastheoriginalrecord?
Thetaskofbeingacceptedandenrolledinauniversityorcollegebeginsearlyforsomestudents.Long【C1】______theygraduate
最新回复
(
0
)