首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
admin
2019-11-25
61
问题
设a
1
,a
2
,…,a
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a
1
,β+a
2
,…,β+a
t
线性无关.
选项
答案
方法一 由a
1
,a
2
,…,a
t
线性无关[*]β,a
1
,a
2
,…,a
t
线性无关, 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
a
1
+…+k
t
a
t
=0, ∵β,a
1
,a
2
,…,a
t
线性无关 ∴[*]=k=k
1
=…=k
t
=0, ∴β,β+a
1
,β+a
2
,…,β+a
t
线性无关 方法二 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, [*](k+k
1
+…+k
t
)β=-k
1
a
1
-…-k
t
a
t
[*](k+k
1
+…+k
t
)Aβ=-k
1
Aa
1
-…-k
t
Aa
t
=0, ∵Aβ≠0,∴k+k
1
+…+k
t
=0,∴k
1
a
1
+…+k
t
a
t
=0[*]k=k
1
=…=k
t
=0, 所以β,β+a
1
,…,β+a
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/29D4777K
0
考研数学三
相关试题推荐
设常数0<a<1,求
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
A,B均是n阶矩阵,且AB=A+B.证明A—E可逆,并求(A—E)-1.
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,C=,则|C|=_______.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
下列矩阵中不相似于对角矩阵的是()。
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=-α1-3α2-3α3,Aα2=4α1+4α2+α3),Aα3=-2α1+3α3。(Ⅰ)求A的特征值;(Ⅱ)求A的特征向量;(Ⅲ)求A*-6E的秩。
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’"(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
随机试题
成交失败后应该注意的事项包括()
在拔牙后的牙槽窝下方出现的圆形囊性影像多为呈多房性囊性影像,分房大小相近,颌骨膨胀不明显,多为
A.左归丸B.右归丸C.归肾D.血府逐瘀汤E.苍附导痰丸治疗闭经痰湿阻滞证,应首选
华钩藤钩藤
单位工程施工进度计划应按照()的安排进行编制。
在财务清查中填制的“实存账存对比表”是()。
关于基金的分类,下列说法错误的是()。
不属于客户的理财目标的准确表述的是()。
(2011年考试真题)下列对法所作的分类中,以法的创制方法和发布形式为依据进行分类的是()。
简述教师培养学生注意力的方法。
最新回复
(
0
)