首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
admin
2019-11-25
36
问题
设a
1
,a
2
,…,a
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a
1
,β+a
2
,…,β+a
t
线性无关.
选项
答案
方法一 由a
1
,a
2
,…,a
t
线性无关[*]β,a
1
,a
2
,…,a
t
线性无关, 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
a
1
+…+k
t
a
t
=0, ∵β,a
1
,a
2
,…,a
t
线性无关 ∴[*]=k=k
1
=…=k
t
=0, ∴β,β+a
1
,β+a
2
,…,β+a
t
线性无关 方法二 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, [*](k+k
1
+…+k
t
)β=-k
1
a
1
-…-k
t
a
t
[*](k+k
1
+…+k
t
)Aβ=-k
1
Aa
1
-…-k
t
Aa
t
=0, ∵Aβ≠0,∴k+k
1
+…+k
t
=0,∴k
1
a
1
+…+k
t
a
t
=0[*]k=k
1
=…=k
t
=0, 所以β,β+a
1
,…,β+a
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/29D4777K
0
考研数学三
相关试题推荐
求定积分的值.
因k值不同,故分情况讨论:当k>1时,原式=[*]即积分收敛;当k=1时,原式=[*]即积分发散;当k<1时,原式=[*],即积分发散.综上,当k>1时,原积分为[*];当k≤1时,原积分发散.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
A是n阶方阵,A*是A的伴随矩阵,则|A*|=()
设n维行向量矩阵A=E一αTα,B=E+2αTα,则AB=()
设方程+(a+sin2x)y=0的全部解均以π为周期,则常数a=_________________________。
设A是5×4矩阵,r(A)=4,则下列命题中错误的为()。
n维向量α=(1/2,0,…0,1/2)T,A=E-4ααT,β=(1,1,…1)T,则Aβ的长度为()。
极限()
设y(x)是方程y(4)-yˊˊ=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
随机试题
A.干扰敏感菌的叶酸代谢B.抑制细菌脱氧核糖核酸(DNA)回旋酶,干扰DNA的复制C.专一抑制β-内酰胺酶活性D.能与细菌细胞质膜上的蛋白结合,引起转肽酶、羧肽酶、内肽酶活性丧失E.抑制磷酸二酯酶青霉素类药物抗菌的作用机理是
A.轻型B.普通型C.迁延型D.逍遥型E.顿挫型伤寒患者,体温38℃左右,症状较轻,2周左右痊愈,其临床分型是
立堵截流的戗堤轴线下游护底长度可按龙口平均水深的2~4倍,轴线以上可按最大水深的()倍取值。
自律性是会计法律制度与会计职业道德在()上的区别。
通货膨胀与通货紧缩,从成因角度看,二者的共同点是()
我国走新型工业化道路必须大力推进产业结构优化升级,形成新的产业格局,其主要内容有()。
Overthepastdecade,thousandsofpatentshavebeengrantedforwhatarecalledbusinessmethods.Amazon,comreceivedonefor
围绕创建工作分解结构,关于下表的判断正确的是______
専務がお戻りになるまで、ここで待たせて よろしいですか。
A、AftertheContinentalCongress’commissiontoprinttheDeclaration.B、Afterherbrotherwentbrokeandintoprison.C、Aftera
最新回复
(
0
)