首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
admin
2019-11-25
69
问题
设a
1
,a
2
,…,a
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a
1
,β+a
2
,…,β+a
t
线性无关.
选项
答案
方法一 由a
1
,a
2
,…,a
t
线性无关[*]β,a
1
,a
2
,…,a
t
线性无关, 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, 即(k+k
1
+…+k
t
)β+k
1
a
1
+…+k
t
a
t
=0, ∵β,a
1
,a
2
,…,a
t
线性无关 ∴[*]=k=k
1
=…=k
t
=0, ∴β,β+a
1
,β+a
2
,…,β+a
t
线性无关 方法二 令kβ+k
1
(β+a
1
)+k
2
(β+a
2
)+…+k
t
(β+a
t
)=0, [*](k+k
1
+…+k
t
)β=-k
1
a
1
-…-k
t
a
t
[*](k+k
1
+…+k
t
)Aβ=-k
1
Aa
1
-…-k
t
Aa
t
=0, ∵Aβ≠0,∴k+k
1
+…+k
t
=0,∴k
1
a
1
+…+k
t
a
t
=0[*]k=k
1
=…=k
t
=0, 所以β,β+a
1
,…,β+a
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/29D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上连续,(0,1)内可导,且f(x)dx=f(0).证明:在(0,1)内存在一点c,使f’(c)=0.
设f(x)在(一∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期
[*]
已知A,B是3阶方阵,A≠O,AB=O.证明:B不可逆.
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
已知P为3阶非零矩阵,且满足PQ=O,则()
设随机变量X的分布函数为F(x),概率密度为其中A为常数,则()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
设A,B为同阶方阵。举一个二阶方阵的例子说明(I)的逆命题不成立;
随机试题
构建核心价值体系最重要的是要正确处理社会主义核心价值体系与思想多样性和社会多样化发展的关系,就是要()。
当前,世界所面临的五大社会问题包括资源、环境、粮食、能源和______。
"Igotcancerinmyprostrate."DetectiveAndySipowiczofthefictional15thPrecinct,astoic,bigbearofaman,isclearlyi
对于哮喘持续状态应选用
A、方圆形B、卵圆形C、尖圆形D、椭圆形E、混合型从上颌侧切牙的远中逐渐转向后端,使前牙所连成的牙列较圆,这种牙列形态是
关于建筑使用后评价(POE)的说法,错误的是:
下列关于施工方项目管理目标和任务的表述中,正确的是()。
资料:北京磐石电梯有限公司(1101950188)委托前景国际贸易公司出口一批电梯配件,该批配件属于《机电产品自动进口管理目录》中的商品,《机电产品自动进口许可证》(O:1100-4567024-98601),《出境货物通关单》(B:××××××××××
诚信,是指诚实守信,能够【131】承诺而取得他人信任。诚信是人类社会基本的道德【132】,也是一种非常宝贵的资源。先哲孔子早就提醒人们:“人而无信,不知其可也”,“民无信不立”。北宋神宗时的宰相王安石有诗日:“一言为重百斤轻”,也是极言诚信的重要
A、ThepreviousexperiencewhenhostingOlympics.B、AsimilarinitiativelastyearfromtheMilanWorldExpo.C、Workingexperienc
最新回复
(
0
)