首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)—2f’(ξ)=一2.
设f(x)二阶可导,,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)—2f’(ξ)=一2.
admin
2021-01-12
35
问题
设f(x)二阶可导,
,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)—2f’(ξ)=一2.
选项
答案
由[*]得f(0)=0,f’(0)=1; 由拉格朗日中值定理,存在c∈(0,1),使得 [*] 令ψ(x)=e
-2x
[f’(x)一1], ψ(0)一ψ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得ψ(ξ)=0, 而ψ’(x)=一2e
-2x
[f’(x)一1]+e
-2x
f"(x)=e
-2x
[f"(x)一2f’(x)+2],且e
-2x
≠0, 故f"(ξ)一2f’(ξ)=一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/2D84777K
0
考研数学二
相关试题推荐
[2018年]设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求xn.
设有曲线y=,过原点作其切线,求由此曲线、切线及x轴围成的平面图形绕x轴旋转一周所得旋转体的表面积.
已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,一1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表示?并写出此表示式.
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记P=(x,Ax,A2x),求三阶矩阵B,使A=PBP—1;
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求求Bx=0的通解。
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
设矩阵A的伴随矩阵A*=,且ABA—1=BA—1+3E,其中E为四阶单位矩阵,求矩阵B。
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,.证明:存在ξ∈(0,2),使得f"’(ξ)=2.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求gˊ(x)并讨论函数gˊ(x)的连续性.
随机试题
五加皮、桑寄生功效的共同点是
下述体位,适合心脏摄影的是
目前普通商品住房的最低资本金比例为20%。()
实物法和预算单价法相比,工作内容的不同主要体现在()阶段。
根据《土地增值税暂行条例》规定,土地增值税的扣除项目包括()。
“舌尖现象”可以用来证明()。
_______,_______。寡助之至,亲戚畔之;多助之至,天下顺之。
结合材料回答问题:材料1当细菌发生变异,抗生素对需要用抗生素治疗感染的人不再有效,就是抗生素耐药。世卫组织官员称,如果没有多方紧急协调行动,“世界就会迈向后抗生素时代,多年来可治疗的常见感染和轻微伤痛可再一次置人于死地。“这不是预测,而可能是即
A、 B、 C、 A
RealpolicemenhardlyrecognizeanyresemblancebetweentheirlivesandwhattheyseeonTV—iftheyevergethomeintime.There
最新回复
(
0
)