首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a>0,求的最值.
设a>0,求的最值.
admin
2019-02-20
25
问题
设a>0,求
的最值.
选项
答案
利用[*]可得函数f(x)的分段表达式 [*] 从而函数f(x)在(-∞,+∞)上连续,且分别在(-∞,0),(0,a),(a,+∞)三个区间内可导,其导函数是 [*] 由此得x∈(-∞,0)时f’(x)>0,故f(x)在(-∞,0]单调增加;x∈(a,+∞)时f’(x)<0,故f(x)在[a,+∞)单调减少.从而f(x)在[0,a]上的最大值就是f(x)在(-∞,+∞)上的最大值. 当x∈(0,a)时,由 [*] 得唯一驻点[*] 由于[*]因此f(x)在[0,a]即在(-∞,+∞)上的最大值是[*] 由于f(x)在(-∞,0)上单调增加,在(a,+∞)上单调减少,又f(x)在[0,a]上的最小值[*]因此f(x)在(-∞,+∞)上无最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/2FP4777K
0
考研数学三
相关试题推荐
已知A=,求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知矩阵A=的特征值有重根,判断A能否相似对角化,并说明理由.
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
设有两个n元齐次线性方程组Ax=0及Bx=0,证明:(1)若Ax=0的解都是Bx=0的解,则r(A)≥r(B).(2)若Ax=0与Bx=0同解,则r(A)=r(B).
曲线y=k(x2一3)2在拐点处的法线通过原点,求k的值.
设f(x)为连续的奇函数,且当x<0时,f(x)<0,f’(x)≥0.令φ(x)=∫—11f(xt)dt+∫0xtf(t2一x2)dt,讨论φ(x)在(一∞,+∞)内的凹凸性.
设A,B都是三阶方阵,满足AB=A—B,若λ1,λ2,λ3是A的三个不同特征值,证明:(1)λ1≠一1(i=1,2,3);(2)存在可逆阵C,使CTAC,CTBC同时为对角矩阵.
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X与Y的两个相互独立的简单随机样本,统计量()
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设f(x)二阶可导,=1且f"(x)>0.证明:当x≠0时,f(x)>x.
随机试题
科技在价值上可能是中立的。()
______dictionaryisenoughforme.
头颅外伤昏迷患者摄影时应选用的体位是
男性,60岁,间断无痛性肉眼血尿3个月,尿出蚯蚓状血块收住院。作膀胱镜检查结果:膀胱未见到肿瘤,右侧输尿管口可见活动性出血,有小凝血块。
对针灸学进行第三次总结的著作是
在对股票进行基本面分析时,通常不会考虑的因素是()。
大额可转让定期存单最早产生于美国。美国的《Q条例》规定,商业银行对活期存款不能支付利息,定期存款不能突破一定限额。20世纪60年代,美国市场利率上涨,高于《Q条例》规定的上限,资金从商业银行流入金融市场。为了吸引客户,商业银行推出可转让大额定期存单。购买存
145,120,101,80,65,()
有一批商品需要装箱运输。商品每件均为10厘米×40厘米×80厘米的长方体。包装箱为边长为1.2米的立方体,一个包装箱最多能装()件商品。
简述唐朝主要立法活动。
最新回复
(
0
)