首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
admin
2021-07-27
77
问题
已知非齐次线性方程组A
3×4
x=6①有通解k
1
[1,2,0,-2]
T
+k
2
[4,-1,-1,-1]
T
+[1,0,-1,1]
T
,则满足方程组①且满足条件x
1
=x
2
,x
3
=x
4
的解是________.
选项
答案
[2,2,-1,-1]
T
解析
方程组①的通解为
解得k
1
=1,k
2
=0,代入通解得满足①及x
1
=x
2
,x
3
=x
4
的解为[2,2,-1,-1]
T
.
转载请注明原文地址:https://kaotiyun.com/show/2Hy4777K
0
考研数学二
相关试题推荐
设A为m×n阶矩阵,C为n阶矩阵,B=AC,且r(A)=r,r(B)=r1,则().
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
设A是m×n矩阵,AT是A的转置,若η1,η2,…,ηt为方程组ATx=0的基础解系,则r(A)=()
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
已知y1=xex+e2x和y2=xex+e一x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
写出下列二次型的矩阵:
确定常数a,b,c的值,使得当χ→0时,eχ(1+bχ+cχ2)=1+aχ+o(χ3).
随机试题
含水率是指集料在饱水状态下的最大吸水程度。()
对建筑和制造公司中工作场所安全的研究发现,当工作负荷增加时,受伤率上升。因为在工作负荷增加时,无经验的工人经常被雇用,受伤率的增加无疑归因于无经验工人的高事故率。下面哪一项如果正确,最能削弱上面的结论?
女,72岁,全口义齿戴用1周,自述休息位时义齿固位尚可,但张口、说话或打哈欠时义齿脱位,戴上义齿口腔黏膜疼痛,取下后疼痛缓解,吃东西时常咬颊部,检查见上唇系带处有小溃疡,部分义齿边缘相对的黏膜充血张口、说话或打哈欠时义齿脱位的原因可排除哪项
基本农田保护方针是()。
王羲之的《兰亭序》、颜真卿的()、苏轼的《黄州寒食诗帖》被称为“天下三大行书”。
环磷酰胺的毒性反应包括
恰好有6种颜色的小球(红色、黄色、绿色、蓝色、白色和黑色)等间距地放在一个圆盘周围的六个小洞中。小洞从1到6编号,号码相邻的小洞相邻,1号小洞与6号小洞相邻。每个小洞上恰好放一个小球,并且遵循TAT的条件:(1)黑色与蓝色相邻;(2)黄
=_____.
YearafteryearadedicatedSwedishchemistworkedtofindasubstancewhich,when(1)_____nitroglycerine(硝化甘油),wouldmakeexp
请根据下图所示网络结构回答下列问题。如果需要IP地址为59.67.151.128的主机使用第三方软件监控路由器RG的运行状态,请写出路由器RG必须支持的协议名称。
最新回复
(
0
)