首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
已知非齐次线性方程组A3×4x=6①有通解k1[1,2,0,-2]T+k2[4,-1,-1,-1]T+[1,0,-1,1]T,则满足方程组①且满足条件x1=x2,x3=x4的解是________.
admin
2021-07-27
97
问题
已知非齐次线性方程组A
3×4
x=6①有通解k
1
[1,2,0,-2]
T
+k
2
[4,-1,-1,-1]
T
+[1,0,-1,1]
T
,则满足方程组①且满足条件x
1
=x
2
,x
3
=x
4
的解是________.
选项
答案
[2,2,-1,-1]
T
解析
方程组①的通解为
解得k
1
=1,k
2
=0,代入通解得满足①及x
1
=x
2
,x
3
=x
4
的解为[2,2,-1,-1]
T
.
转载请注明原文地址:https://kaotiyun.com/show/2Hy4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,下列命题错误的是().
设A,B皆为n阶矩阵,则下列结论正确的是().
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
设f(x)在[0.1]上二阶可导.且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0.1)内有根.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
写出下列二次型的矩阵:
微分方程y"+2y’+2y=e一xsinx的特解形式为()
随机试题
青春期男孩与女孩的素质差异的变化主要表现在
患者,男,25岁。头晕1个月,高热,鼻衄1周来诊,心烦口渴,皮肤见瘀点及瘀斑,舌红绛苔黄燥,脉数。实验室检查:全血细胞减少,骨髓增生减低,无巨核细胞,治疗应首选()
不以内毒素或外毒素为致病物质的细菌是
A.HLB值B.置换价C.Krafft点D.昙点E.絮凝度表示表面活性剂分子中亲水和亲油基团对油或水的综合亲和力的是()。
药物经济学研究中,采用多中心研究方法时应注意的问题不包括( )。
自动化仪表线路是仪表电线、电缆、()、光缆和电缆槽、保护管等附件的总称。
某施工单位承接了一个标段的二级公路工程施工任务。项目中有大量小型预制构件需要预制,施工单位决定就近选择场地布置预制场。在预制场建设准备和预制施工中有如下事件发生:事件1:考虑到路线较长,项目部决定对路基排水工程的水沟盖板、防护工程的各型预制块、隧
下列各种票据中,不属于《票据法》调整范围的有()。
甲、乙两人承包一项工程,共得工资1120元。已知甲工作了10天,乙工作了12天,且甲5天的工资和乙4天的工资同样多。求甲、乙每天各分得工资多少元?
______istheworld’slargestexporterofdairyproducts.
最新回复
(
0
)