首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
设α1,α2,α3,α4是4元非齐次线性方程组Aχ=b的4个解向量,且α1+α2=(2,4,6,8)T,α2+α3+α4=(3,5,7,9)T,α1+2α2-α3=(2,0,0,2)T,若秩r(A)=2,则方程组Aχ=b的通解是
admin
2018-06-12
79
问题
设α
1
,α
2
,α
3
,α
4
是4元非齐次线性方程组Aχ=b的4个解向量,且α
1
+α
2
=(2,4,6,8)
T
,α
2
+α
3
+α
4
=(3,5,7,9)
T
,α
1
+2α
2
-α
3
=(2,0,0,2)
T
,若秩r(A)=2,则方程组Aχ=b的通解是
选项
A、
B、
C、
D、
答案
A
解析
因为方程组Aχ=有解,且秩r(A)=2,那么n-r(A)=4-2=2,故通解形式为α+k
1
η
1
+k
2
η
2
.显然选项D不符合解的结构,应排除.选项C中(3,5,7,9)
T
不是Aχ=b的解也应排除.下面应当用解的性质分析出特解α及导出组的基础解系.
由于A(α
1
+α
2
)=2b,有A
=b,因此(1,2,3,4)
T
是方程Aχ=b的一个解.
又(α
2
+α
3
+α
4
)-(α
1
+α
2
)=α
3
+(α
4
-α
1
)=(1,1,1,1)
T
也是方程组Aχ=b的解.而
(α
1
+α
2
)-(α
1
+2α
2
-α
3
)=α
3
-α
2
=(0,4,6,6)
T
,
3(α
1
+α
2
)-2(α
2
+α
3
+α
4
)=2(α
1
-α
3
)+(α
1
-α
4
)+(α
2
-α
4
)=(0,2,4,6)
T
是导出组Aχ=0的解.
故应选A.
转载请注明原文地址:https://kaotiyun.com/show/2Ug4777K
0
考研数学一
相关试题推荐
非齐次方程组的通解是_______.
设矩阵A=,那么矩阵A的三个特征值是()
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:(1)a1能由a2,a3线性表示;(2)a4不能由a1,a2,a3线性表示.
求线性方程组的通解,并求满足条件χ12=χ22的所有解.
设f(χ,y)在全平面有连续偏导数,曲线积分∫Lf(χ,y)dχ+χcosydy在全平面与路径无关,且f(χ,y)dχ+χcosydy=t2,求f(χ,y).
下列等式或不等式中正确的共有
设有摆线L:(-π≤θ≤π),则L绕χ轴旋转一周所得旋转面的面积A=_______.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3-2),求此楔形体的体积V.
求不定积分
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
随机试题
中国魏晋时期的______哲学流派对这个时期的诗歌、书法作品创作中深层的意蕴具有重要影响。()
A.含挥发油,油中主成分为桂皮酸B.含挥发油,油中主成分是α、β-桉油醇C.七叶树素、七叶树苷D.东莨菪碱、莨菪碱E.黄酮类化合物、绿原酸、异绿原酸
A.对工作极端负责,对技术精益求精B.树立正确的经营道德观C.为病患者提供质量保证的药品和安全、有效、经济、合理的药学服务D.互相关心,维护集体荣誉E.开展用药调查及药品利用评价药品流通领域的道德责任之一是()
案情:2009年1月,甲、乙、丙、丁、戊共同投资设立鑫荣新材料有限公司(以下简称鑫荣公司),从事保温隔热高新建材的研发与生产。该公司注册资本2000万元,各股东认缴的出资比例分别为44%、32%、13%、6%、5%。其中,丙将其对大都房地产开发有限公司所持
美国对失职或在执业中出现问题的房地产经纪人采取的主要措施有()。
当量子能量达到()eV以上时,对物体有电离作用,能导致机体的严重损伤,这类辐射称为电离辐射。
下列选项中,不属于全国人大常委会的预算管理职权的是()。
2019年2月,农业农村部等七部门联合印发《国家质量兴农战略规划(2018—2022年)》。下列关于实施质量兴农战略的说法,正确的是:
“杵臼之交”多用来指不计身份而结交的朋友。这里的“杵臼”在古代是用来做什么的?()
PeoplewhogrewupinAmericaandWesternEuropehavebecomeusedtotheideathattheWestdominatestheworldeconomy.Infact
最新回复
(
0
)