首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程xa=lnx(a<0)在(0,+∞)内有且仅有一个实根。
证明:方程xa=lnx(a<0)在(0,+∞)内有且仅有一个实根。
admin
2021-07-15
60
问题
证明:方程x
a
=lnx(a<0)在(0,+∞)内有且仅有一个实根。
选项
答案
令f(x)=lnx-x
a
(a<0),则f(x)在(0,+∞)内连续,且f(1)=-1<0,[*],故对任意M>0,存在X>1, 当x>X时,有f(x)>M>0,任取x
0
>X,则f(1)·f(x
0
)<0,根据零点定理,至少存在ξ∈(1,x
0
),使得f(ξ)=0,即方程x
a
=lnx在(0,+∞)内至少有一实根。 又lnx在(0,+∞)内单调增加,因a<0,-x
a
也单调增加,从而f(x)在(0,+∞)内单调增加,因此方程f(x)=0在(0,+∞)内只有一个实根,即方程x
a
=lnx在(0,+∞)内只有一个实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/2my4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内有f(x)>0恒成立且xf’(x)=f(x)+ax2。由曲线y=f(x)与直线x=1,y=0围成的平面图形的面积为2。(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)a取何值时,此图形绕x轴旋转一周而
设函数f(x)可导,且f(0)=0,F(x)=
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
抛物线y2=2x把圆x2+y2=8分成两个部分,求左右两个部分的面积之比.
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设函数y=y(x)由参数方程所确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是()
已知抛物线y=ax2+bx+c,在其上的点P(1,2)的曲率圆的方程为,求常数a,b,c的值.
随机试题
能使血糖浓度升高的激素有
闭经的不孕患者进行内分泌检查时,下列哪项不必要
猪支原体肺炎的流行病学特点是
苟家庄村村民由于环境污染一案向阳晋县法院提起民事诉讼,由于村民人数太多,决定进行代表人诉讼,下列推选诉讼代表人的方式正确的是:()
按照《施工合同文本》规定,在施工中由于()造成工期延误,经发包人代表确认,竣工日期可以顺延。
在项目实施阶段,应协调处理施工现场周围有关文物、古树等的保护工作,并承担相应费用的是()。
按照金融监管机构监管的范围划分,监管体制的类型有()。
幼儿园的教育内容是全面的、启蒙的,各领域的内容相互渗透,从不同角度促进幼儿()等方面的发展。
试论集会、游行、示威自由的特点及限制。
下列选项中,______不属于Java语言的简单数据类型。
最新回复
(
0
)