首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).
[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).
admin
2019-04-28
75
问题
[2005年] 设矩阵A=[a
ij
]
3×3
满足A
*
=A
T
,其中A
*
为A的伴随矩阵,A
T
为A的转置矩阵,若a
11
,a
12
,a
13
为3个相等的正数,则a
11
为( ).
选项
A、
B、3
C、1/3
D、
答案
A
解析
解一 显然矩阵A满足命题2.2.2.1中的三个条件,因而由该命题得|A|=1.将|A|按第1行展开得到1=|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+a
12
2
+a
13
2
=3a
11
2
,故
仅(A)入选.
解二 由A
*
=A
T
,即
其中A
ij
为|A|中元素a
ij
的代数余子式,得a
ij
=A
ij
(i,j=1,2,3).将|A|按第1行展开,得到
|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
11
2
+
12
2
+a
13
2
=3a
11
2
>0.
又由A
*
=A
T
得到|A
*
|=|A|
3-1
=|A
T
|=|A|,即|A|(|A|=1)=0,而|A|>0,故|A|-1=0,即|A|=1,则3a
11
2
=1.因a
11
>0,故
仅(A)入选.
注:命题2.2.2.1 设A为n(n≥3)阶实矩阵,其元素分别与其代数余子式相等(a
ij
=A
ij
(i,j=1,2,…,n),即A
T
-A
*
或A=(A
*
)
T
)且其中一元素不等于0,则其行列式|A|等于1.
转载请注明原文地址:https://kaotiyun.com/show/2zJ4777K
0
考研数学三
相关试题推荐
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.(2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
参数A取何值时,线性方程组有无数个解?求其通解.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
求幂级数的收敛域,并求其和函数.
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
设总体X的概率密度函数为f(x;θ)=其中0<0<1是位置参数,c是常数,X1,X2,…,Xn是取自总体X的简单随机样本,则c=________;θ的矩估计量
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
Analyzethecomponentsofthefollowingwords:revive,minicar,automobiles,exit,porter.
在词源上,中文的“组织”是指()。
考满
汽车是由许多不同的零件构成的。
诊断重链病的重要依据是
妊娠期龈瘤的描述,哪一项是不正确的
根据《中华人民共和网药品管理法》A.5日内B.7日内C.10日内D.15日内E.20日内对己确认发生严重不良反应的药品,国家或省级药品监督管理部门自鉴定结论作出之日起,依法作出行政处理决定的期限为
表观遗传是指DNA序列不发生变化,但基因表达却发生了可遗传的改变。这种改变是细胞内除了遗传信息以外的其他可遗传物质发生的改变,且这种改变在发育和细胞增殖过程中能稳定传递。根据上述定义,下列体现了表观遗传的是:
涅伽达文化工
Allthepartsofthesewashingmachinesare______,sothatitisveryconvenienttOreplacethem.
最新回复
(
0
)