首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
admin
2021-02-25
26
问题
设V
1
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=0),
V
2
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=1),
问V
1
,V
2
是不是向量空间?为什么?
选项
答案
①V
1
是向量空间,因为(0,0,…,0)∈V
1
,所以V
1
非空. 若α=(x
1
,x
2
,…,x
n
)∈V
1
,β=(y
1
,y
2
,…,y
n
)∈V
1
,λ∈R,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
), 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=0,所以α+β∈V
1
.λα=(λx
1
,λx
2
,…,λx
n
),λx
1
+λx
2
+…+λx
n
=λ(x
1
+x
2
+…+x
n
)=0, 所以λα∈V
1
.所以V
1
对加法和数乘运算均封闭,从而可得V
1
是向量空间; ②V
2
不是向量空间. 若α=(x
1
,x
2
,…,x
n
)∈V
2
,β=(y
1
,y
2
,…,y
n
)∈V
2
,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
). 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=1+1= 2,所以α+β[*]V
2
,从而可得V
2
对加法运算不封闭,所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/3484777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且满足,k>1,证明至少存在一点ξ∈(0,1),使得f’(ξ)=(1-ξ-1)f(ξ).
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
设=a(a≠0),求n及a的值.
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
(14)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是____________.
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)T,则α2由α1,α3,α4表示的表达式为_______.
随机试题
简述计算机的主要性能指标。
交换积分的次序:=__________。
A.循环血量减少B.血浆晶体渗透压升高C.两者都是D.两者都不是使ADH释放增多的是
A.400mlB.300mlC.200m1D.50mlE.0.5ml/h每日尿量少于多少为无尿()
上一题中,甲的占有是()。
合同的双方当事人可以根据自己的意愿决定是否采取书面形式订立合同。()
水、火电厂进行有功功率经济分配时,在洪水期水煤转换系数取值()。
边际效用递减规律
AsApplepreparestoreportwhat(analystsproject)maybethecompany’sfirstyear-over-yearquarterlyearningsdeclineinadeca
A、Discussingtheimportanceofmakingawillwithhim.B、Discussingtheprocessesofhisfuneralplan.C、Discussingyourhealth
最新回复
(
0
)