首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
admin
2021-02-25
49
问题
设V
1
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=0),
V
2
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=1),
问V
1
,V
2
是不是向量空间?为什么?
选项
答案
①V
1
是向量空间,因为(0,0,…,0)∈V
1
,所以V
1
非空. 若α=(x
1
,x
2
,…,x
n
)∈V
1
,β=(y
1
,y
2
,…,y
n
)∈V
1
,λ∈R,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
), 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=0,所以α+β∈V
1
.λα=(λx
1
,λx
2
,…,λx
n
),λx
1
+λx
2
+…+λx
n
=λ(x
1
+x
2
+…+x
n
)=0, 所以λα∈V
1
.所以V
1
对加法和数乘运算均封闭,从而可得V
1
是向量空间; ②V
2
不是向量空间. 若α=(x
1
,x
2
,…,x
n
)∈V
2
,β=(y
1
,y
2
,…,y
n
)∈V
2
,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
). 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=1+1= 2,所以α+β[*]V
2
,从而可得V
2
对加法运算不封闭,所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/3484777K
0
考研数学二
相关试题推荐
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设x与y均大于0,且x≠y,证明:<1.
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
(11)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
随机试题
机铰结束后,应先停机再退刀。( )
函数z=的全微分dz=()
Hedrovetotheairportto______Mr.DixonwhocametoseehimfromOrlando.
基金管理人面临的风险有外部风险和内部风险。关于外部风险,下列说法中错误的是()。
旅行社内部环境分析主要包括对()的分析。
下列措施中,属于银行业市场运营监管内容的是()。
宏观经济调控体系的三大支柱有()。
理论上决策支持系统模型的构成往往都包含四库,分别是知识库、数据库、模型库和______。
执行如下SQL语句后SELECT*FROMstockINTODBFstockORDER8Y单价有如下SQLSELECT语句SELECT*FROMstockWHERE单价BETWEEN12.76AND15.
Hedidnotlikeabstractpainting(atall),so(themore)helookedatthedrawings(exhibited)intheartgallery,(thelittle)
最新回复
(
0
)