首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
admin
2021-02-25
46
问题
设V
1
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=0),
V
2
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=1),
问V
1
,V
2
是不是向量空间?为什么?
选项
答案
①V
1
是向量空间,因为(0,0,…,0)∈V
1
,所以V
1
非空. 若α=(x
1
,x
2
,…,x
n
)∈V
1
,β=(y
1
,y
2
,…,y
n
)∈V
1
,λ∈R,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
), 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=0,所以α+β∈V
1
.λα=(λx
1
,λx
2
,…,λx
n
),λx
1
+λx
2
+…+λx
n
=λ(x
1
+x
2
+…+x
n
)=0, 所以λα∈V
1
.所以V
1
对加法和数乘运算均封闭,从而可得V
1
是向量空间; ②V
2
不是向量空间. 若α=(x
1
,x
2
,…,x
n
)∈V
2
,β=(y
1
,y
2
,…,y
n
)∈V
2
,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
). 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=1+1= 2,所以α+β[*]V
2
,从而可得V
2
对加法运算不封闭,所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/3484777K
0
考研数学二
相关试题推荐
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
下列矩阵中,正定矩阵是()
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
随机试题
输尿管损伤最少见的原因是
患者,女,45岁。气短,水肿,发现“室性期前收缩”半年。心尖区2/6级收缩期吹风样杂音及舒张期奔马律。胸透见全心增大,搏动明显减弱。最可能的诊断是
蛛网膜下腔出血最常见的病因是
50岁,男性十二指肠溃疡出血,入院时神志清,表性淡漠,口渴明显,面色苍白,四肢湿冷,脉搏120次/分,心律齐,血压85/75mmHg,Hb90g/L,尿少。既往高血压、冠心病史。进一步治疗不应考虑
物权是一种财产权,包括()。
下列各项,属于没有实物形态的非货币性长期资产的是( )。
某设备的账面原价为500万元,预计使用年限为4年,预计净残值率为4%,采用双倍余额递减法计提折旧。该设备在第3年应计提的折旧额为()万元。
ABC会计师事务所的A注册会计师负责审计甲公司等多家被审计单位2015年度财务报表,与存货审计相关事项如下:(5)己公司管理层规定,由生产部门人员对全部存货进行盘点,再由财务部门人员抽取50%进行复盘,A注册会计师对复盘项目执行抽盘,未发现差异,
中国近代史的起点是()
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
最新回复
(
0
)