首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
设V1={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=0), V2={x=(x1,x2,…,xn)T|x1,…,xn∈R满足x1+…+xn=1), 问V1,V2是不是向量空间?为什么?
admin
2021-02-25
51
问题
设V
1
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=0),
V
2
={x=(x
1
,x
2
,…,x
n
)
T
|x
1
,…,x
n
∈R满足x
1
+…+x
n
=1),
问V
1
,V
2
是不是向量空间?为什么?
选项
答案
①V
1
是向量空间,因为(0,0,…,0)∈V
1
,所以V
1
非空. 若α=(x
1
,x
2
,…,x
n
)∈V
1
,β=(y
1
,y
2
,…,y
n
)∈V
1
,λ∈R,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
), 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=0,所以α+β∈V
1
.λα=(λx
1
,λx
2
,…,λx
n
),λx
1
+λx
2
+…+λx
n
=λ(x
1
+x
2
+…+x
n
)=0, 所以λα∈V
1
.所以V
1
对加法和数乘运算均封闭,从而可得V
1
是向量空间; ②V
2
不是向量空间. 若α=(x
1
,x
2
,…,x
n
)∈V
2
,β=(y
1
,y
2
,…,y
n
)∈V
2
,则 α+β=(x
1
+y
1
,x
2
+y
2
,…,x
n
+y
n
). 而x
1
+y
1
+x
2
+y
2
+…+x
n
+y
n
=(x
1
+x
2
+…+x
n
)+(y
1
+y
2
+…+y
n
)=1+1= 2,所以α+β[*]V
2
,从而可得V
2
对加法运算不封闭,所以V
2
不是向量空间.
解析
转载请注明原文地址:https://kaotiyun.com/show/3484777K
0
考研数学二
相关试题推荐
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设f(x)在区间[0,1]上可微,且满足条件,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设A=,则下列矩阵中与A合同但不相似的是
下列矩阵中,正定矩阵是()
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
随机试题
具有“交通心肾”功用的方剂有
男婴4个月,佝偻病活动期,为患儿注射维生素D时,下列哪项是错误的()
对病毒性肝炎患者使用过的化纤织物,最好的消毒方法是
规划咨询中,专项规划一般不包括()
登记账簿时,发生的空行要用斜线注销,发生的空页则可以撕掉。()
大连A企业与日商达成一笔交易,合同规定我方出口某商品500公吨,每公吨450美元CFRC2%大阪,海运运费每公吨29美元,出口收汇后出口企业向该日商汇付佣金,计算:(1)该出口企业向中国银行购买支付佣金的美元共需多少人民币?(2)该出口企业的外汇净收入为多
根据人寿保险、社会保险以往的死亡记录(经验)所编制,保险公司使用的是( )。
下列()情况,享受廉租住房保障的家庭将被建设(住房保障)主管部门取消保障资格。
在古代,中国、埃及和希腊的学校主要采用的教学组织形式是()。
—般来说,网络操作系统可以分为两类:—类是专用型NOS;另—类是______NOS。
最新回复
(
0
)