首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 求a的值。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 求a的值。
admin
2019-03-23
63
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示。
求a的值。
选项
答案
4个3维向量β
1
,β
2
,β
3
,α
i
(i=1,2,3)必线性相关。若β
1
,β
2
,β
3
线性无关,则α
i
(i=1,2,3)可由β
1
,β
2
,β
3
线性表示,这与题设矛盾。所以β
1
,β
2
,β
3
线性相关,从而 |(β
1
,β
2
,β
3
)|=[*]=a—5=0, 于是a=5。此时,α
i
(i=1,2,3)不能由向量组β
1
,β
2
,β
3
线性表示。
解析
转载请注明原文地址:https://kaotiyun.com/show/3HV4777K
0
考研数学二
相关试题推荐
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设C=,其中A,B分别是m,n阶矩阵.证明C正定A,B都正定.
设A为实矩阵,证明r(ATA)=r(A).
设A是m×n矩阵,B是n×s矩阵,C是m×s矩阵,满足AB=C,如果秩r(A)=n,证明秩r(B)=r(C).
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
证明:与基础解系等价的线性无关的向量组也是基础解系.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
已知曲线L的方程406过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;
随机试题
适合需要多个职能部门的协调,并涉及复杂的技术问题又不要求技术专家全日制参与的项目的组织类型是()
简述古典科学管理理论最突出的贡献及其局限性。
______gotoutsidethanitbegantorain.
“带长剑兮挟秦弓,首身离兮心不惩”出自()
治疗上颌部面痛的主穴是
建设工程项目质量控制系统的控制目标是根据( )所规定的质量标准。
阅读材料,回答相关问题。课堂教学中陈旧的教学模式,落后的教学方法有碍学生创新精神的培养。随着教育改革的深入,教学方式、教师的角色、学生的地位等都发生了很大的变化。将教师讲、学生听的“一言堂”式教学,变为师生互动、相互促进的合作式教学;学
甲在缓刑考验期内犯罪,但在缓刑考验期满后才被发现,且未过追诉时效,对甲的处理应该是()。
通过连接两个进程的一个打开的共享文件,可以实现进程间的数据通信。这种通信方式称为()。
Forsometimepastithasbeenwidelyacceptedthatbabies—andothercreatures—learntodothingsbecausecertainactsleadto"
最新回复
(
0
)