首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y)二阶连续可偏导,f’x(x,1)=2x+1一sinx,f"xy(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=________.
设f(x,y)二阶连续可偏导,f’x(x,1)=2x+1一sinx,f"xy(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=________.
admin
2021-01-12
59
问题
设f(x,y)二阶连续可偏导,f’
x
(x,1)=2x+1一sinx,f"
xy
(x,y)=2x+2y,且f(0,y)=2y+3,则f(x,y)=________.
选项
答案
x
2
y+xy
2
+cosx+2y+2
解析
由f"(x,y)=2x+2y得
f’(x,Y)=2xy+y
2
+ψ(z),
由f’(x,1)=2x+1一sinx得ψ(x)=一sinx,
即f’(x,Y)=2xy+y
2
一sinx,
由f’(x,y)=2xy+y
2
一sinx得f(x,y)=x
2
y+xy
2
+cosx+h(y),
由f(0,y)=2y+3得h(y)=2y+2,
故f(x,y)=x
2
y+xy
2
+cosx+2y+2.
转载请注明原文地址:https://kaotiyun.com/show/3J84777K
0
考研数学二
相关试题推荐
设A=且|A|=3,B=,则B*A=_______.
[2000年]已知f(x)是周期为5的连续函数,它在x=0的邻域内满足关系式f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方
(Ⅰ)比较∫01|lnt|[ln(l+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2003年试题,三)设函数问a为何值时f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数ψ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求
设f(χ)=求f′(χ)并讨论其连续性.
设D是由曲线y=(0≤x≤1)与(0≤t≤π/2)围成的平面区域,求D绕x轴旋转一周所得旋转体的体积和表面积。
随机试题
护理水、电解质和酸碱失衡病人的预期目标是()
管理的二重性是指
下列梗死灶常发生化脓的是
既能祛风湿,又能退虚热的药是
呋喃唑酮主要用于()。
通常情况下,导致商业银行破产倒闭的直接原因是()。
社会服务机构财务管理的功能主要包括()。
不安抗辩权,是指当事人瓦负债务,有先后履行顺序的,先履行的一方有确切证据表明另一方丧失履行债务能力时,在对方没有履行或者没有提供担保之前,有权中止合同履行的权利。规定不安抗辩权是为了切实保护当事人的合法权益,防止借合同进行欺诈,促使对方履行义务。以下行使了
A、 B、 C、 D、 D
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
最新回复
(
0
)