首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶正定矩阵,证明|A+2E|>2n.
设A是n阶正定矩阵,证明|A+2E|>2n.
admin
2019-03-12
56
问题
设A是n阶正定矩阵,证明|A+2E|>2
n
.
选项
答案
设矩阵A的特征值是λ
1
,λ
2
,…,λ
n
.因为A正定,故特征值λ
i
>0(i=1,2,…,n).又A+2E的特征值是λ
1
+2,λ
2
+2,…,λ
n
+2,所以 |A+2E|=(λ
1
+2)(λ
2
+2)…(λ
n
+2)>2
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/3MP4777K
0
考研数学三
相关试题推荐
设A是3阶实对称矩阵,且满足A2+2A=O,若kA+E是正定矩阵,则k_______.
设随机变量X1,X2,X3,X4相互独立且都服从标准正态分布N(0,1),已知对给定的α(0<α<1),数yα满足P{Y>yα}=a,则有
函数f(x)=cosx+xsinx在(—2π,2π)内零点的个数为
设X1,X2,…,Xn是来自总体X的简单随机样本,X的概率密度为f(x)=—∞<x<+∞.λ>0是未知参数.(Ⅰ)求λ的矩估计量(Ⅱ)求λ的最大似然估计量
设总体X的方差存在,X1,X2,…,Xn是取自总体X的简单随机样本,其样本均值和样本方差分别为,S2,则EX2,的矩估计量是
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=—α1—3α2—3α3.Aα2=4α1+4α2+α3,Aα3=—2α1+3α3.①求A的特征值.②求A的特征向量,③求A*—6E的秩.
求(x,y,z)=2x+2v—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设f(x)为可导的偶函数,满足=2,则曲线y=f(x)在点(-1,f(-1))处的切线方程为________。
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
设二次型f(x1,x2,x3)=2x12+ax22+2x32+2x1x2-2bx1x3+2x2x3,经过正交变换化为3y12+3y22。(Ⅰ)求a,b的值;(Ⅱ)求正交变换x=Qy,使二次型化为标准形。
随机试题
McDonald’sRestaurantsFounders:Twobrothers—MacandDickCreativeideas:(1)preparingsomeofthefood【
Dadhadablackcomb.HeboughtitwhenhemarriedMum.Everynight,hewould【C1】______mehiscombandsay,"Goodgirl,helpDad
关于改扩建项目经济评价的特点中,下列说法正确的是()。
系统管理层次中,充分采用各类安全技术和防护手段综合构成的属于()层次。
某企业2011年3月份的“材料成本差异明细账”如下表所示(计算保留两位小数):该企业3月份结存材料差异率为()。
恩格尔系数是指食品支出总额占个人消费支出总额的比重。根据联合国粮农组织提出的标准,恩格尔系数在()为富裕。
在皮亚杰儿童认知发展阶段理论中,具有抽象逻辑思维处于()。
“四书五经”中的四书是指《大学》《中庸》《论语》《孟子》。()
甲系出租车司机,为发泄对单位领导不满而驾车在人群密集的广场冲撞,造成多人伤亡。甲的行为构成()
Thesearedarkdaysforthebookbusiness.Borders,aonce-hugebookseller,【C1】______onJuly18ththatitwillclosedownitsre
最新回复
(
0
)