首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
admin
2019-07-16
97
问题
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
选项
答案
由题设可知旋转体体积为V=∫
1
t
f
2
(χ)dχ 曲边梯形的面积为S=∫
1
t
f(χ)dχ 由题设可知,π∫
1
t
f
2
(χ)dχ=πt∫
1
t
f(χ)dχ 即∫
1
t
f
2
(χ)dχ=t∫
1
t
f(χ)dχ 上式两端对t求导得 f
2
(t)=∫
1
t
f(χ)dχ+tf(t) (*) 继续求导得2f(t)f′(t)=f(t)+f(t)+tf′(t) 即(2y-t)[*]=2y (其中y=f(t)) [*] [*] 在(*)式中令t=1得f
2
(1)=f(1),即f(1)=1或f(1)=0.而由题设知f(t)>1,则f(1)=1,代入t=[*]知,C=[*],即t=[*]. 则所求曲线方程为2y+[*]-3χ=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/3NJ4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,4]上连续,且∫04f(x)dx=0,求证:存在ξ∈(0,4)使得f(ξ)+f(4一ξ)=0.
差分方程yt+1一3yt=满足条件y0=5的特解是_____.
设图形(a),(b),(c)如下:从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设函数则f(10)(1)=________.
曲线的斜渐近线方程为______.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为求y=y(x).
计算二重积分x2+4x+y2)dxdy,其中D是曲线(x2+y2)=a2(x2-y2)围成的区域.
设f(x)为连续函数,计算其中D是由y=x3,y=1,x=-1围成的区域.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线在原点处的切线与曲线及直线x=1所围成的平面图形的面积.
随机试题
硬膜外阻滞麻醉根据阻滞部位可分为
李老汉因房屋租赁纠纷将房客王某告上法庭,案件立案后法院通知李老汉预交150元的诉讼费。李老汉提出申请减免诉讼费,结果法院认为李老汉虽然是孤寡老人,可是在京城有两处房产出租,生活并不困难,遂驳回了李老汉的申请。李老汉坚持不交诉讼费用,却依然开始准备证据出庭
投资者可筹集到的优先资金如果不用于拟建项目而用于其他最佳投资机会所能获得的收益率是( )。
地下燃气管道埋设的最小覆土厚度(路面至管顶)应符合相关要求,埋设在车行道下时,最小覆土厚度不得小于()m。
其他合作机构风险的防控措施不包括()。
MMPI的编制方法属于()。
在汉字的形体演变过程中,位于小篆和楷书之间的字体是()。
A、 B、 C、 D、 C
有以下程序 #include<stdio.h> #defineS(x)x*x/x main() {intk=6,j=3; printf("%d,%d\n",S(k+j+2),S(j+k+2); } 程序运行后的输出结果是(
Weareamagazine,whichwillgiveyouinsideinformationyouwon’tfindelsewhere.
最新回复
(
0
)