首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
admin
2019-07-16
130
问题
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
选项
答案
由题设可知旋转体体积为V=∫
1
t
f
2
(χ)dχ 曲边梯形的面积为S=∫
1
t
f(χ)dχ 由题设可知,π∫
1
t
f
2
(χ)dχ=πt∫
1
t
f(χ)dχ 即∫
1
t
f
2
(χ)dχ=t∫
1
t
f(χ)dχ 上式两端对t求导得 f
2
(t)=∫
1
t
f(χ)dχ+tf(t) (*) 继续求导得2f(t)f′(t)=f(t)+f(t)+tf′(t) 即(2y-t)[*]=2y (其中y=f(t)) [*] [*] 在(*)式中令t=1得f
2
(1)=f(1),即f(1)=1或f(1)=0.而由题设知f(t)>1,则f(1)=1,代入t=[*]知,C=[*],即t=[*]. 则所求曲线方程为2y+[*]-3χ=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/3NJ4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,4]上连续,且∫04f(x)dx=0,求证:存在ξ∈(0,4)使得f(ξ)+f(4一ξ)=0.
求幂级数的收敛域D与和函数S(x).
差分方程yt+1一3yt=满足条件y0=5的特解是_____.
设图形(a),(b),(c)如下:从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形D.(I)求切线L的方程.(Ⅱ)求D绕y轴旋转一周所得旋转体体积V.
将抛物线y=x2一x与x轴及直线x=c(c>1)所围成平面图形绕x轴旋转一周,所得旋转体的体积Vx等于弦op(p为抛物线与直线x=c的交点)绕x轴旋转所得锥体的体积V锥,则c的值为______.
计算二重积分x2+4x+y2)dxdy,其中D是曲线(x2+y2)=a2(x2-y2)围成的区域.
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b.证明:
随机试题
试述相对剩余价值的生产过程。
下列属于等渗溶液的是()。
正常血细胞氯乙酸AS-D萘酚酯酶染色呈阳性反应的是
患儿,男,12岁。口底部广泛性水肿2天。检查:水肿范围上及面颊部,下至锁骨水平,皮肤灼热,红肿发硬,压痛明显,呈凹陷性水肿。并可扪及捻发音。此病的诊断应是
以下关于改扩建项目财务分析的说法中正确的是()。[2013年真题]
下列不属于电渣压力焊易发的职业病类型的是()。
王老师在讲授物种分类时,为了让学生更深刻地理解同科属物种的相似性,她利用春游的机会带领学生去当地的自然博物馆参观,有效弥补了学生对物种分类的认知欠缺。王老师采用的教学方法是()。
目前我国雾霾问题突出。某地采取了控制排放、官员问责、巡视组约谈等一系列举措进行治理,针对该地的做法谈谈你的看法。
甲路过某自行车修理店,见有一辆名牌电动自行车(价值1万元)停在门口,欲据为己有。甲见店内货架上无自行车锁便谎称要购买,催促店主去50米之外的库房拿货。店主临走时对甲说:“我去拿锁,你帮我看一下店。”店主离店后,甲骑走电动自行车。甲的行为构成何罪?()
Speakingtwolanguagesratherthanjustonehasobviouspracticalbenefitsinanincreasinglyglobalizedworld.Butinrecentye
最新回复
(
0
)