首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
admin
2015-11-16
52
问题
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
选项
答案
证 直线AB的方程是[*] 引进辅助函数[*] 它的几何意义是连接A、B两点的直线与曲线f(x)之差,由题设知在A点、B点及C点处这两条线相交,自然有 F(a)=F(b)=F(c)=0, 也就是说在这三点处两函数的函数值相同。 由已知条件F(a)=F(c)=F(b)=0知,函数F(x)在区间[a,c]和[c,b]上满足罗尔定理。因此,在区间(a,c)内至少存在一点ξ
1
,使得F’(ξ
1
)=0;在区间(c,b)内至少存在一点ξ
2
,使得F’(ξ
2
)=0。 因a<ξ
1
<c<ξ
2
<b,且F"(x)=f"(x)在(a,b)内存在,故F’(x)在区间[ξ
1
,ξ
2
]上满足罗尔定理条件。于是,在区间(ξ
1
,ξ
2
)内至少存在一点ξ,显然ξ也在区间(a,b)内,使得 F"(ξ)=f"(ξ)=0
解析
[证题思路] 利用曲线f(x)与直线AB的方程之差作一辅助函数F(x),由题设知这两条线有三个交点,因而F(x)有三个零点,三次使用罗尔定理,可知存在ξ∈(a,b),使f"(ξ)=0。
转载请注明原文地址:https://kaotiyun.com/show/3Tw4777K
0
考研数学一
相关试题推荐
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
设有3阶实对称矩阵A满足A3-6A2+11A-6E=0,且|A|=6.判断二次型f=xT(A+E)x的正定性.
求I=,其中D是由抛物线y2=x,直线x=0,y=1所围成.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A一E)及行列式|A+2E|.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设平面区域求二重积分
设函数f(x),g(x)具有二阶导数,且g"(x)>0,若g(1)=2是g(x)的极值,f’(2)>0,讨论f[g(x)]在x=1处是否取得极值,是极大值还是极小值。
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22若提供的广告费用为1.5万元
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
关于银行的“风险管理部门”的说法正确的是()。
简述毛泽东行政组织思想的理论渊源。
关于心包摩擦音的叙述,不正确的是
治疗眼病、热病、神志病,宜选用的经脉是
孕妇妊娠8个月,产前来医院咨询,对母乳喂养的婴儿如何预防佝偻病的发生,以下几项中有哪一项是错误的( )。
A平肝潜阳,息风止痉B平肝潜阳,清肝明目C平肝潜阳,清热解毒D息风止痉,解毒散结E息风止痉,清肝明目蜈蚣与全蝎均具有的功效是()
可靠性原则要求企业的各项财产在取得时按实际发生的成本计量,其后各项财产如果发生了价值减损,应根据谨慎性原则计提减值准备,计提的减值准备减少资产的账面价值;如果各项财产发生的升值,应根据可靠性的原则相应调整增加财产的账面价值。()
在发票的各联次中,由收执方作为付款或收款原始凭证的称为()。
()预测是指利用各种经济因素的统计数据或它们之间的数量依存关系来推测未来事件的发展程度。
下列不正确的叙述是( )。
最新回复
(
0
)