首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
admin
2015-11-16
51
问题
已知函数f(x)在区间[a,b]上连续,在(a,b)内f’(x)存在,设连接A(a,f(a)),B(b,f(b))两点的直线交曲线y=f(x)于点C(c,f(c)),且a<c<b,试证:在区间(a,b)内至少存在一点ξ,使f"(ξ)=0。
选项
答案
证 直线AB的方程是[*] 引进辅助函数[*] 它的几何意义是连接A、B两点的直线与曲线f(x)之差,由题设知在A点、B点及C点处这两条线相交,自然有 F(a)=F(b)=F(c)=0, 也就是说在这三点处两函数的函数值相同。 由已知条件F(a)=F(c)=F(b)=0知,函数F(x)在区间[a,c]和[c,b]上满足罗尔定理。因此,在区间(a,c)内至少存在一点ξ
1
,使得F’(ξ
1
)=0;在区间(c,b)内至少存在一点ξ
2
,使得F’(ξ
2
)=0。 因a<ξ
1
<c<ξ
2
<b,且F"(x)=f"(x)在(a,b)内存在,故F’(x)在区间[ξ
1
,ξ
2
]上满足罗尔定理条件。于是,在区间(ξ
1
,ξ
2
)内至少存在一点ξ,显然ξ也在区间(a,b)内,使得 F"(ξ)=f"(ξ)=0
解析
[证题思路] 利用曲线f(x)与直线AB的方程之差作一辅助函数F(x),由题设知这两条线有三个交点,因而F(x)有三个零点,三次使用罗尔定理,可知存在ξ∈(a,b),使f"(ξ)=0。
转载请注明原文地址:https://kaotiyun.com/show/3Tw4777K
0
考研数学一
相关试题推荐
∫arctan(1+)dχ.
设f(x)=,求f(x)的连续区间及间断点.
求下列不定积分:
求齐次线性方程组的基础解系.
确定常数a和b,使得函数处处可导.
椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕x轴旋转而成.(1)求S1及S2的方程;(2)求S1与S2之间的立体体积.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求矩阵A的特征值。
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最[*]
求幂级数的和函数.
连续进行n次独立重复试验,设每次试验中成功的概率为p,0≤p≤1.问p为何值时,成功次数的方差为0?p为何值时,成功次数的方差达到最大?
随机试题
在用卧式测长仪测量时,其读数结果是由三者相加得到的,即精密玻璃刻度尺的像上的读数、固定分划尺上的读数及螺旋线分划板内的圆周刻线尺上估读得的读数。()
埋设在一般泥土中的管道应用()防腐层。
患者,男性,27岁。因腰部受伤后伤口持续溢出淡红色液体,血压100/70mmHg,脉搏100次/分,出现休克症状。左上腹有压痛,但无肌紧张和反跳痛。对该患者的护理措施不当的是
骨关节炎关节肿大的特点不正确的是
下列说法正确的是()。
商业银行的()直接反映了其从宏观到微观的所有层面的运营状况及市场声誉。
在现代社会中,通常控制社会经济运行的两大并行力量是()。
华佗是我国东汉名医。一次,府吏倪寻和李延俩人均头痛发热。一同去请华佗诊治,华佗经过仔细的望色、诊脉,开出两付不同的处方。给倪寻开的是泻药,给李延开的是解表发散药。二人不解:我俩患的是同一症状,为何开的药方却不同呢?是不是华佗弄错了?于是,他们向华佗请教。华
为了把观众从电视夺回来,好莱坞推出了一种新玩艺——立体电影。戴着特殊眼镜的观众像在观看《布瓦那魔鬼》及《蜡屋》这类惊险片那样,发现自己躲在逃跑的火车及魔鬼的后面,感受真实刺激。2010年由著名导演詹姆斯.卡梅隆执导3D电影《阿凡达》更是大获成功,立体影片得
--Neverthoughttoseeyouhere.
最新回复
(
0
)