首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
admin
2019-04-05
41
问题
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
选项
A、∫
0
x
f(t
2
)dt
B、∫
0
x
f
2
(t)dt
C、∫
0
x
t[f(t)-f(一t)]dt
D、∫
0
x
t[f(t)+f(一t)]dt
答案
D
解析
利用命题1.1.1.2判别,也可举反例排错确定正确选项.
解一 因f(t
2
)为偶函数,故其原函数∫
0
x
f(t
2
)dt为奇函数,而f
2
(t)为非奇非偶函数,故其原函数一般也是非奇非偶函数.因f(t)一f(-t)为奇函数,f(t)+f(一t)为偶函数,故t[f(t)一f(一t)]为偶函数,其原函数为奇函数;t[f(t)+f(一t)]为奇函数,其原函数为偶函数.仅(D)入选.
解二 仅(D)入选.证明如下:令F(x)=∫
0
x
t[f(t)+f(一t)]dt,则
F(一x)=∫
0
-x
t[f(t)+f(一t)]dt
∫
0
x
u[f(一u)+f(u)]du=F(x).
转载请注明原文地址:https://kaotiyun.com/show/3WV4777K
0
考研数学二
相关试题推荐
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
证明:方程xa=Inx(a<0)在(0,+∞)内有且仅有一个根.
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
设函数f(x,y)可微,,求f(x,y).
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
连续函数f(x)满足f(x)=f(x-t)dt+2,则f(x)=______
[2009年](I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)一f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f′(x)=
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
[2012年]曲线y=的渐近线条数为().
随机试题
A.加快补液速度,充分补液B.适当补液C.使用强心药D.舒张血管E.补液试验休克患者中心静脉压及血压均低时
A.免疫调节B.免疫调理C.免疫抑制D.打破免疫耐受E.建立免疫耐受先天免疫缺陷是
世界各国政府对本国咨询业常采取()等扶持政策。
借贷记账法的特点有()。
关于质量认证制度,下列说法错误的是()。
举一反三,触类旁通等是典型的______形式。
设二维随机变量(X,Y)的分布函数为V(x,y),已知X=Y,且都服从标准正态分布.如有F(a,b)=,则
用C语言编写的代码______。
A、TherootofJim’shealthproblems.B、Thewoman’sproblemswithherworkaholicprofessor.C、Jim’srelationshipwithhisprofess
A、WelearnedthatMaryisgoingtoHawaii.B、WelearnedthatMaryhastraveledallovertheworld.C、WelearnedthatMarylikep
最新回复
(
0
)