首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
admin
2019-04-05
57
问题
[2002年] 设函数f(x)连续,则下列函数中必为偶函数的是( ).
选项
A、∫
0
x
f(t
2
)dt
B、∫
0
x
f
2
(t)dt
C、∫
0
x
t[f(t)-f(一t)]dt
D、∫
0
x
t[f(t)+f(一t)]dt
答案
D
解析
利用命题1.1.1.2判别,也可举反例排错确定正确选项.
解一 因f(t
2
)为偶函数,故其原函数∫
0
x
f(t
2
)dt为奇函数,而f
2
(t)为非奇非偶函数,故其原函数一般也是非奇非偶函数.因f(t)一f(-t)为奇函数,f(t)+f(一t)为偶函数,故t[f(t)一f(一t)]为偶函数,其原函数为奇函数;t[f(t)+f(一t)]为奇函数,其原函数为偶函数.仅(D)入选.
解二 仅(D)入选.证明如下:令F(x)=∫
0
x
t[f(t)+f(一t)]dt,则
F(一x)=∫
0
-x
t[f(t)+f(一t)]dt
∫
0
x
u[f(一u)+f(u)]du=F(x).
转载请注明原文地址:https://kaotiyun.com/show/3WV4777K
0
考研数学二
相关试题推荐
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f"[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1.(1)a、b为何值时,g(x)在x=0处连续.(2)a、b为何值时,g(x)在x=0处可导.
求极限:
求极限:.
设随机变量X1,X2,…,Xn,…相互独立,则根据列维一林德伯格中心极限定理,当n定充分大时,X1+X2+…+Xn近似服从正态分布,只要Xi(i=1,2,…)满足条件()
设f(x)是连续函数,且,则F’(x)等于
(2011年)一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由χ2+y2=2y(y≥)与χ+y=1(y≤)连接而成.(Ⅰ)求容器的容积;(Ⅱ)若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m
(2003年试题,六)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
随机试题
热证形成的主要原因是()(2009年第137题)
下列有关专家参与反垄断诉讼的表述中,正确的是()。
当你需要传递一条信息时,从理解到接受阶段可能发生的障碍是
简述代位继承与转继承的区别。
金合金全冠抛光所用抛光剂是
下列关于无形资产会计处理的表述中,正确的是()。
LetterofCreditisissuedbythe()forimporterbenefits.
截至今年5月12日,全国电影票房超过81亿元,其中,中国产影片市场份额达到63%,而去年同期仅为34%。吴冠平指出:《致我们终将逝去的青春》《北京遇上西雅图》等国产电影有自己独特的文化吸引力,这是其魅力所在。目前,基于本土文化的国产电影已经取得了不错的成绩
设n维行向量α=,A=E-ααT,B=E+2αTα,则AB为().
TheHypertextTransferProtocol,theWeb’s(1)protocol,isattheheartoftheWeB.HTTPisimplementedintwoprograms:a(2)program
最新回复
(
0
)