首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2) T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4) T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时
设有向量组(Ⅰ):α1=(1,0,2) T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4) T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时
admin
2018-07-27
43
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
1 由于行列式|α
1
α
2
α
3
|=a+1,故当a≠-1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(1,2,3)均有解(且有唯一解),即向量组(Ⅱ)可由(Ⅰ)线性表示;又因行列式|β
1
β
2
β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.所以,当a≠-1时,向量组(Ⅰ)与(Ⅱ)等价.当a=-1时,由于秩[α
1
α
2
α
3
]≠秩[α
1
α
2
α
3
[*]β
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即向量β
1
不能由向量组(Ⅰ)线性表示,所以此时向量组(Ⅰ)与(Ⅱ)不等价. 2 若(Ⅰ)与(Ⅱ)等价,则秩(Ⅰ)=秩(Ⅱ),而秩(Ⅱ)=3,[*]秩(Ⅰ)=3,[*]行列式|α
1
α
2
α
3
|=a+1≠0,[*]a≠-1;反之,若a≠-1,则(Ⅰ)与(Ⅱ)都是线性无关组,又因由4个3维向量构成的向量组α
1
,α
2
,α
3
,β
i
线性相关,[*]β
i
可由α
1
,α
2
,α
3
线性表示(i=1,2,3),即(Ⅱ)可由(Ⅰ)线性表示,同理知(Ⅰ)可由(Ⅱ)线性表示,所以当a≠-1时,(Ⅰ)与(Ⅱ)必等价.综上可知,(Ⅰ)与(Ⅱ)等价[*]a≠-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/3XW4777K
0
考研数学三
相关试题推荐
设f(x)是在(-∞,+∞)上连续且以T为周期的周期函数,求证:方程f(x)-的闭区间上至少有一个实根.
在函数
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
计算行列式Dn=之值.
行列式D==_______.
已知A=.若=8A-1B+12E,①求矩阵B.
设矩阵A=,行列式|A|=-1,又A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c及λ0的值.
求arctanx带皮亚诺余项的5阶麦克劳林公式.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
已知A,B,C都是行列式值为2的三阶矩阵,则D=________。
随机试题
Y式沟通是一种只能_____沟通的模式。
目前测定肾小球滤过率的金指标是
属于非器官特异性自身免疫病的是
设f(x,y)是连续函数,则=()。
根据《合伙企业法》的规定,下列情形中,经其他合伙人一致同意,可以决议将其除名的有()。
当事人以技术入股方式订立联营合同,但技术入股人不参与联营体的经营管理,并且以保底条款形式约定由联营体或者联营他方支付其技术价款或者使用费的,视为合作开发合同。()
行款格式的基本内容不包括()。
Since1989,DaveThomas,whodiedatage69,wasoneofthemostrecognizablefacesonTV.Heappearedinmorethan800commerci
在Cisco路由器上执行writememory命令,其正确的结果是将路由器的配置保存到()。
友人のしょうかいで、マスコミかんけいの仕事を始めた。
最新回复
(
0
)