首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设n阶矩阵A= (I)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
[2004年] 设n阶矩阵A= (I)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
admin
2019-05-10
33
问题
[2004年] 设n阶矩阵A=
(I)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
利用现有结论可求得A的特征值和部分特征向量.求出A的全部特征向量后排成可逆矩阵P,即为所求.求解时需对b进行讨论. (I)解一 根据A的结构特点:主对角线上的元素全为a=1,非零对角线上的元素全为b,由命题2.5.1.7即得到A的特征值为λ
1
=1+(n-1)b,λ
2
=λ
3
=…=λ
n
=1-b. (Ⅱ)(1)当b≠0时,A有n个线性无关的特征向量α
1
,α
2
,…,α
n
.令P=[α
1
,α
2
,…,α
n
],则 P
-1
AP—A=diag(1+(n一1)b,1一b,…,1一b). (2)当b=0时,因A=E,则对任意可逆矩阵P,均有P
-1
AP=E.
解析
转载请注明原文地址:https://kaotiyun.com/show/3jV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设A为n阶矩阵,A2=A,则下列成立的是().
设A,B都是n阶可逆矩阵,则().
设f(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(χ)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f′(ξ)>0,f′(η)<0.
证明:,其中a>0为常数.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A,B为3阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________.
设。计算行列式|A|;
随机试题
除了某些特殊和紧急情况以外,工作人员接到违反安全规程的命令,应拒绝执行。
论文是指用()思维的方法,通过说理辨析,阐明客观事务本质、规律和内在联系的文章。
为给要求供水可靠性高且不允许供水中断的用户供水,宜选用的供水方式为()。
某混凝土结构施工采用木模板。木模板一次净用量为200m2,模板现场制作安装不可避免的操作损耗率为3%,该模板可周转使用5次,每次补损率为5%,该模板周转使用量为()m2。
私募基金的合格投资者投资于单只私募基金的金额不低于()万元。
关于国际贸易各种结算方式的说法,正确的有()。
简述学生身心发展的一般规律。
Youcanenjoy______atJackStein’s.
有如下类声明:classFoo{intbar;};则Foo类的成员bar是()。
AccordingtotheCASS’sfindings,inwhichcitywhite-collarworkers’incomeisthehighest?
最新回复
(
0
)