首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x. (1)记P=(x Ax A2x),求3阶矩阵B,使A=PBP—1; (2)计算行列式|A+E|.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x. (1)记P=(x Ax A2x),求3阶矩阵B,使A=PBP—1; (2)计算行列式|A+E|.
admin
2016-04-11
85
问题
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A
2
x线性无关,且满足A
3
x=3Ax一2A
2
x.
(1)记P=(x Ax A
2
x),求3阶矩阵B,使A=PBP
—1
;
(2)计算行列式|A+E|.
选项
答案
(1)设 [*] 则由AP=PB,得 (Ax A
2
x A
3
x)=(Ax A
2
x 3Ax一2A
3
x)=(x Ax A
2
x)[*] 上式可写成 Ax=a
1
x+b
1
Ax+c
1
A
2
x (1) A
2
x=a
2
x+b
2
Ax+c
2
A
2
x (2) 3Ax—2A
2
x=a
3
x+b
3
Ax+c
3
A
2
x (3) 由于x,Ax,A
2
x线性无关,故 由(1)式可得 a
1
=c
1
=0,b
1
=1 由(2)式可得 a
1
=b
2
=0,c
2
=1 由(3)式可得 a
3
=0,b
3
=3,c
3
=一2 从而 B=[*] (2)由(1)有A=PBP
—1
,故 A+E=PBP
—1
+E=P(B+E)P
—1
两端取行列式,得 |A+E|=|P||B+E||P
—1
|=|B+E=[*]=一4
解析
本题综合考查按列分块矩阵的运算.向量用基向量的线性表示、满秩方阵的概念、方阵乘积的行列式等.注意,当3维向量组x,Ax,A
2
x线性无关时,该向量组就可作为3维向量空间的基,因而任一3维向量都可由该向量组线性表示;另一方面,欲求B使AP=PB,按列表示就是Ap
j
=Pβ
j
(其中p
j
为P之第j列,β
j
=[b
1j
,b
2j
,b
3j
]T为B之第j列(j=1,2,3)),或Ap
j
=(p
1
p
2
p
3
)
=b
1j
p
1
+b
2j
p
2
+b
3j
p
3
由于P可逆,P之列向量组p
1
,p
2
,p
3
为3维空间的基,而上式说明B之第j列(b
1j
,b
2j
,b
3j
)
T
就是向量Ap
j
在这个基下的坐标,故以上两方面说明,本题(1)求矩阵B的本质是求AP的列向量在基p
1
,p
2
,p
3
下的坐标列向量.
本题(1)实际上已说明A与B是相似的,从而知A+E与B+E相似,而相似矩阵有相同的行列式,因而由B+E的行列式就可求出A+E的行列式.注意,一般地有:若A与E相似,则对于任何多项式f(x),有f(A)与f(B)相似.
转载请注明原文地址:https://kaotiyun.com/show/85w4777K
0
考研数学一
相关试题推荐
设f(x)二阶可导,且f’(x)<f(x),有f(0)=1,则下列结论正确的是().
求函数f(x,y)=xy一x一y在由抛物线y=4—x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
设f(x)在x=0处存在二阶导数,且求f(0),f’(0)及f’’(0).
求极限.
计算极限.
设f(x)在[0,﹢∞)上连续,且f(x)=dt证明:方程2f(x)=x在(0,﹢∞)内有唯一实根ξ
已知A=有三个线性无关的特征向量,则a=__________.
求幂级数的收敛域及和函数.
设积分区域D是由双纽线(x2+y2)2=2xy所围成,则xydxdy=().
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
随机试题
某家电企业联盟,以甲、乙、丙三家企业为核心层,以这三家企业的供应商为外围层,成员企业问的协调和冲突仲裁由核心层企业组成的协调委员会负责。这种企业联盟模式属于()。
脊髓灰质炎又称_______________,病变主要在_______________,表现为________________。
A.实寒证B.实热证C.虚热证D.虚寒证E.寒热错杂证阳偏衰所表现的证候是
与照片颗粒性无关的因素是
以下有关所有权的权能的表述,理解正确的是:()
信贷资金的供求状况属于影响银行营销决策的()因素。
在考评的组织实施阶段,应关注的事项不包括()。(2007年11月三级真题)
国家赔偿是指国家机关及其工作人员因行使职权给公民、法人及其它组织的人身权或财产造成损害,依法给予的赔偿。()
随着科学技术的发展,人类已经制造出诸如醋纤维、基苯乙烯、合成橡胶等自然原本不存在的化合物,其数量已达数百万种。这一情况说明
Theoldmusiciandecidedtomovetohercountryhome______heradvancedageandpoorhealth.
最新回复
(
0
)