首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶实对称矩阵A的特征值为6,3,3,α1=(1,1,1)T是属于特征值λ1=6的特征向量,求矩阵A.
已知3阶实对称矩阵A的特征值为6,3,3,α1=(1,1,1)T是属于特征值λ1=6的特征向量,求矩阵A.
admin
2018-08-03
77
问题
已知3阶实对称矩阵A的特征值为6,3,3,α
1
=(1,1,1)
T
是属于特征值λ
1
=6的特征向量,求矩阵A.
选项
答案
设A的属于特征值λ
2
=λ
3
=3的特征向量为α=(x
1
,x
2
,x
3
)
T
,则由实对称矩阵的性质,有0=α
1
T
α=x
1
+x
2
+x
3
,解这个齐次线性方程得其基础解系为α
2
=(一1,1,0)
T
,α
3
=(1,1,一2)
T
,则α
2
,α
3
就是属于λ
2
=λ
3
=3的线性无关特征向量.α
1
,α
2
,α
3
已是正交向量组,将它们单位化,得A的标准正交的特征向量为,1=[*](1,1,一2)
T
,于是得正交矩阵 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3rg4777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为,求:(1)f(x);(2)f(x)的极值.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
将函数f(x)=2+|x|(一1≤x≤1)展开成以2为周期的傅里叶级数,并求级数的和.
设二维正态随机变量(X,Y)的概率密度为f(x,y),已知条件概率密度fX|Y(x|y)=.试求:(Ⅰ)常数A和B;(Ⅱ)fX(x)和fY(y);(Ⅲ)f(x,y).
设二维离散型随机变量只取(一1,一1),(一1,0),(1,一1),(1,1)四个值,其相应概率分别为(Ⅰ)求(X,Y)的联合概率分布;(Ⅱ)求关于X与关于Y的边缘概率分布;(Ⅲ)求在Y=1条件下关于X的条件分布与在X=1条件下关于Y的条件分布.
经过点A(-1,2,3),垂直于直线L:且与平面∏:7X+8Y+9z+10=0平行的直线方程是___________.
随机试题
有些炎症,西药中药都能治。不但中药能与一般抗菌素媲美,而且副作用小,成本也较低。
下列哪个决策原则被称为乐观主义原则?()
某化工厂一苯胺管道阀门处发生苯胺泄漏,一检修工在无任何防护条件下抢修近4小时,头晕、乏力、恶心、频繁呕吐而入院。查体:意识清,口唇、耳廓、颜面明显发绀。发生上述临床征象的最主要原因是
心肺复苏的关键是:心肺复苏的重点是:
通风与空调系统综合效能试验测定与调整的项目,应依据()确定。
可以记入账户借方的情况有()。
下列父于柔性防水和刚性防水的说法正确的有()。
《房地产开发企业资质管理规定》将房地产开发企业划分为4个资质等级,其中属于一级资质的必备条件有()。
咬文嚼字有时是一个坏习惯,___________这个成语的含义通常不很好。但是在文学,无论阅读或写作,我们_________有一字不肯放松的谨严。文学借文字___________思想情感:文字上面有含糊,就显得思想还没有_________,情感还没有凝练。
任何不能回答病人的问题的人都不能算是一个合格的医生。这正是我对自己的医生充满信心的原因,因为无论问题多么烦恼,她总是细心地回答我的每一个问题。上述论证中的推理错误也类似地出现在以下哪一项中?
最新回复
(
0
)