首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2016-10-13
58
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、
B、
C、
D、
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/S6u4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
证明下列极限都为0;
用列举法表示下列集合:(1)方程x2-7x+12=0的根的集合(2)抛物线y=x2与直线x—y=0交点的集合(3)集合{x||x-1|≤5的整数}
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
已知曲线,其中函数f(t)具有连续导数,且f(0)=0,fˊ(t)>0,(0<t<π/2),若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
设F(c,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
随机试题
用2012减去一个四位数的差,正好等于将这个四位数各个数位数字相加的和,那么有几个这样的四位数?()
在窗体有两个名为“text0”、“text1”的文本框和一个名为“Command1”的命令按钮,事件过程如下:PrivatesubCommand1_click()x=1n=0DoWhilex<20x=x*2
錾子和样冲在刃磨前都要经过________处理。
脊髓丘脑束()
关节扭伤、脱位及关节附近骨折晚期最易发
口崩片叙述错误的是()。
某项目采用公开招标方式选择咨询服务单位,甲、乙、丙三家工程咨询单位参加投标,评标委员会采用质量成本评估法评标,最终乙咨询单位中标。乙咨询单位编制了该项目的咨询工作初始进度计划,如图6—1所示,图中各项工作均按最早开始时间安排,各工作名称下方注明了咨询工作
背景资料:某公路隧道为浅埋隧道,设计净高5.0m,净宽14.0m,隧道长280m。隧道区域内主要为中等风化岩石,隧道区域内地表水系较发育,区域内以基岩裂隙水为主,浅部残坡积层赋存松散岩类孔隙水,洞口围岩变化段水系较发达。施工单位针对隧道的特点,加
法院指定甲担任乙的监护人之后,甲由于需要外出打工,于是与丙协商变更监护人。由丙担任乙的监护人。此后,在丙监护期间,乙与他人发生冲突,致人左眼失明,需要赔偿10万元。基于本案事实,下列说法正确的是()。
A.inappropriateB.attendC.slipsD.trackE.financeF.unchangeableG.organize
最新回复
(
0
)