首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(3,6,一3)T,
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T. (Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关; (Ⅱ)若β=(3,6,一3)T,
admin
2018-03-30
63
问题
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,其中k
1
,k
2
是任意常数,α=(1,1,1)
T
.
(Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关;
(Ⅱ)若β=(3,6,一3)
T
,求Aβ.
选项
答案
(Ⅰ)由题设条件,A的每行元素之和为3,则 [*] 即A有特征值λ
1
=3,对应的特征向量为ξ
1
=(1,1,1)
T
. Ax=0有通解k
1
(1,2,一2)
T
+k
2
(2,1,2)
T
,知A有特征值λ
2
=λ
3
=0,对应的特征向量为 ξ
2
=(1,2,一2)
T
,ξ
3
=(2,1,2)
T
. 因ξ
1
,ξ
2
,ξ
3
线性无关,故任意3维向量β均可由ξ
1
,ξ
2
,ξ
3
线性表出,设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, 从而有 Aβ=A(x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
)=x
1
Aξ
1
=3x
1
[*]=3x
1
α, 得证Aβ和α线性相关. (Ⅱ)[解]当β=(3,6,一3)
T
时,令β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
,解非齐次线性方程组 [*] 对(*)式的增广矩阵作初等行变换,得 [*] 解得 (x
1
,x
2
,x
3
)
T
=(3,2,一1)
T
. 即 β=3ξ
1
+2ξ
2
—ξ
3
, Aβ=A(3ξ
1
+2ξ
2
—ξ
3
)=3ξ
1
=3×3×[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/3wX4777K
0
考研数学三
相关试题推荐
求幂级数在区间(一1,1)内的和函数S(x).
下列级数中发散的是
设函数y=y(x)是微分方程y’’+y’一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=_________.
设有向量组α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,一1,5,10).则该向量组的极大无关组是【】
设A为m×n矩阵,以下命题正确的是().
设连续型随机变量X的分布函数F(x)严格递增,Y~U(0,1),则Z=F1(Y)的分布函数().
设总体X的分布函数为(X1,X2,…,X10)为来自总体X的简单随机样本,-其观察值为1,1,3,1,0,0,3,1,0,1.(Ⅰ)求总体X的分布律;(Ⅱ)求参数秒的矩估计值;(Ⅲ)求参数θ的极大似然估计值.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,b)内f(x)>0;
设总体X服从韦布尔分布,密度函数为其中α>0为已知,θ>0是未知参数,试根据来自X的简单随机样本X1,X2,…,Xn,求θ的最大似然估计量.
将一枚硬币重复掷五次,则正、反面都至少出现两次的概率为________。
随机试题
在银行风险管理中,风险识别的方法不包括()。
注重学生的情感、责任和人生价值,有利于建立和谐师生关系。这是对()课程论的评价。
下列哪项不符合脓肿的病变()
“一国两制”的基本前提是()
有关苦杏仁不良反应下列哪项是错误的
城市大气污染的主要来源为
会计机构、会计人员必须按照国家统一的会计制度的规定对原始凭证进行审核,对不真实、不合法的原始凭证予以退回,并要求按照国家统一的会计制度的规定进行更正、补充。()
“基于问题的教学”理论基础是行为主义教学理论。()
张教授:由于许多对农业和医学有用的化学制品都取自稀有的濒临灭绝的植物,因此,很可能那些已经绝种了的植物本来可以提供给我们有益于人类的物质。所以,如果我们想要确保在将来也能使用从植物中提炼的化学制品,就必须更加努力地去保护自然资源。李教授:但是,有生命的东西
Mostofushaveformedanunrealisticpictureoflifeonadesertisland.Wesometimesimagineadesertislandtobeasortof【C
最新回复
(
0
)