首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中, (1)A2。(2)P-1AP。 (3)AT。(4)E-A。 α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中, (1)A2。(2)P-1AP。 (3)AT。(4)E-A。 α肯定是其特征向量的矩阵共有( )
admin
2019-01-14
16
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中,
(1)A
2
。(2)P
-1
AP。
(3)A
T
。(4)E-
A。
α肯定是其特征向量的矩阵共有( )
选项
A、1个。
B、2个。
C、3个。
D、4个。
答案
B
解析
由题意Aα=λα,α≠0,于是有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量。
又 (E-
A)α=α-
Aα=(1-
)α,α≠0,
知α必是矩阵E-
A属于特征值1-
的特征向量。
对于(2)和(3)则不一定成立。这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
依定义,矩阵P
-1
AP的特征向量是P
-1
α。由于P
-1
α与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE-A)x=0与(λE-A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量。
转载请注明原文地址:https://kaotiyun.com/show/4AM4777K
0
考研数学一
相关试题推荐
在极坐标变换下将f(x,y)dσ化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
3阶矩阵A,B满足ABA*=2BA*+E,其中A=求|B|.
设有一半径为R,长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设n维向量组α1,α2,…,αs线性相关,并且α1≠0,证明存在1<k≤s,使得αk可用α1,…,αk-1线性表示.
已知线性方程组有解(1,一1,1,一1)T.(1)用导出组的基础解系表示通解;(2)写出x2=x3的全部解.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布.记(I)求U和V的联合分布;(Ⅱ)求U和V的相关系数P.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:(1)第三次取得次品;(2)第三次才取得次品;(3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
假设二维随机变量(X,Y)在矩形G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(Ⅰ)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ.
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
随机试题
下列企业与甲公司有如下关系,其中不应纳入甲公司合并报表合并范围的有
阴闭的病因是
A.呈二叉状分枝,粗枝表面有明显的环状裂纹B.不呈二叉状分枝,两侧有细短的侧枝密生C.呈滴乳状、油滴状或不规则小块,淡黄白色,与水共研形成白色乳状液D.呈不规则颗粒状或黏结成团块,表面红棕色,与水共研形成黄棕色乳状液E.主产于印度尼西亚和马来西亚,
A、维生素B6B、维生素AC、维生素B1D、维生素CE、维生素B2结构中含有异咯嗪环的是()。
酒花变质风险由()承担海上货物运输由()负责安排
中外合资经营企业在下列哪些情形下解散?()
根据《开发区区域环境影响评价技术导则》,开发区区域环境保护对策包括对开发区规划目标、规划布局、总体发展规模、产业结构以及环保基础设施建设的调整方案,下列关于调整方案的说法错误的是()。
在1948年9月召开的中共中央政治局会议上,毛泽东说,我们“不必搞资产阶级的议会制和三权鼎立等”,这套东西“袁世凯、曹锟都搞过,已经臭了”,我们应当“建立民主集中制的各级人民代表会议制度”。毛泽东这段话要回答的是即将成立的新中国的()。
有以下程序:#jnclude<stdio.h>intfun(int(*s)[4],intn,intk){intm,i;m=s[0][k];for(i=1;i<n;i++)if(s[i][k]>m)m=s[i][k];returnm
有以下定义语句,编译时会出现编译错误的是()。
最新回复
(
0
)