首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2019-08-28
79
问题
n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=‖β‖
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…k
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/alJ4777K
0
考研数学三
相关试题推荐
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设求f(n)(x).
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
设有线性方程组设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=P,P(X1=0)=1-P,记Yi=(i=1,2,…,n).求.
对随机变量X,已知EekX存在(k>0为常数),证明:P{X≥ε)≤.E(ekX}.(其中ε>0).
(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常工作的概率.(Ф()=0.9522)(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作.问n
设f(x)在区间(一∞,+∞)内具有连续的一阶导数,并设f(x)=2∫0xf’(x—t)t2dt+sinx,求f(x).
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1—p,Y服从标准正态分布N(0,1).求:(I)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
随机试题
女,60岁。因上腹部疼痛入院,诊断为胰头癌,其主要症状是
假如不考虑其它因素,以下关于上市公司重大资产重组后再融资的说法正确的有()。Ⅰ.甲公司2008年不符合公开发行条件,2009年1月进行重大资产重组,2010年12月可以公开发行公司债券Ⅱ.乙公司2009年1月进行重大资产重组,2010年12月可以
关于ABC分析法,下列叙述正确的有()。
下列选项属于《国务院办公厅关于进一步激发文化和旅游消费潜力的意见》主要任务的是()。
性偏差是指少年性发育过程中的不良适应。如过度手淫、迷恋黄色书刊、早恋、不当性游戏、轻度性别认同困难等,一般【】
侦查实验,禁止一切()的行为。
描述概念模型的常用方法是
输入流对象是输出流的源头,下面()不是输入流类。
Thelightfromthecampfirebrightenedthedarkness,butitcouldnotpreventthedampcoldofDennis’sSwamp(沼泽地)creepingint
Somemarriagesseemtocollapsesosuddenlythatyou’dneedacrystalballtopredicttheirdemise(灭亡).Inothercases,though,
最新回复
(
0
)