首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
admin
2020-10-30
70
问题
设3阶实对称矩阵A的特征值为1,2,-1,α
1
=(2,3,一1)
T
,α
2
=(1,a,2a)
T
分别是特征值1,2的特征向量,求齐次线性方程组(A
*
-2E)x=0的通解.
选项
答案
因为A的特征值为1,2,-1,所以|A|=-2,进一步得A
*
的特征值为-2,-1,2,A
*
-2E的特征值为-4,-3,0.由于A是3阶实对称矩阵,从而A
*
-2E也是3阶实对称矩阵,因此A
*
一2E相似于对角矩阵[*],故[*] 于是齐次线性方程组(A
*
-2E)x=0的基础解系中含有3-R(A
*
-2E)=1个线性无关的解向量. 由于实对称矩阵不同的特征值对应的特征向量是正交的,所以α
1
T
α
2
=2+3a-2a=0,由此得a=-2. 设A的对应于特征值-1的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则[*]对上面齐次线性方程组的系数矩阵实施初等行变换,得[*] 其同解方程组为[*] 取α
3
=(2,-1,1)
T
. 因为A的对应于特征值-1的特征向量是A
*
的对应于特征值2的特征向量,也是A
*
-2E 对应于特征值0的特征向量,即是齐次线性方程组(A
*
-2E)x=0的一个基础解系,故(A
*
-2E)x=0的通解为x=k(2,-1,1)
T
,其中K为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Dx4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.(1)求Cov(X,Z);(2)求Z的概率分布.
已知线性方程组(1)a,b为何值时,方程组有解?(2)在方程组有解时,求出方程组的导出组的一个基础解系,并用它表示方程组的全部解.
(2012年)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’’(x)+f(x)=2ex.(Ⅰ)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0x(一t2)出的拐点.
(87年)求矩阵A=的实特征值及对应的特征向量.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
[2011年]曲线tan(x+y+π/4)=ey在点(0,0)处的切线方程为___________.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
已知矩阵B=相似于对角矩阵.(1)求常数a的值;(2)用正交变换化二次型f(X)=XTBX为标准形,其中X(χ1,χ2,χ3)T为3维向量.
在曲线y=(x-1)2上的点(2,1)处作曲线的法线,由该法线、x轴及该曲线所围成的区域为D(y>0),则区域D绕x轴旋转一周所成的几何体的体积为().
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)