首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
设3阶实对称矩阵A的特征值为1,2,-1,α1=(2,3,一1)T,α2=(1,a,2a)T分别是特征值1,2的特征向量,求齐次线性方程组(A*-2E)x=0的通解.
admin
2020-10-30
54
问题
设3阶实对称矩阵A的特征值为1,2,-1,α
1
=(2,3,一1)
T
,α
2
=(1,a,2a)
T
分别是特征值1,2的特征向量,求齐次线性方程组(A
*
-2E)x=0的通解.
选项
答案
因为A的特征值为1,2,-1,所以|A|=-2,进一步得A
*
的特征值为-2,-1,2,A
*
-2E的特征值为-4,-3,0.由于A是3阶实对称矩阵,从而A
*
-2E也是3阶实对称矩阵,因此A
*
一2E相似于对角矩阵[*],故[*] 于是齐次线性方程组(A
*
-2E)x=0的基础解系中含有3-R(A
*
-2E)=1个线性无关的解向量. 由于实对称矩阵不同的特征值对应的特征向量是正交的,所以α
1
T
α
2
=2+3a-2a=0,由此得a=-2. 设A的对应于特征值-1的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,则[*]对上面齐次线性方程组的系数矩阵实施初等行变换,得[*] 其同解方程组为[*] 取α
3
=(2,-1,1)
T
. 因为A的对应于特征值-1的特征向量是A
*
的对应于特征值2的特征向量,也是A
*
-2E 对应于特征值0的特征向量,即是齐次线性方程组(A
*
-2E)x=0的一个基础解系,故(A
*
-2E)x=0的通解为x=k(2,-1,1)
T
,其中K为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Dx4777K
0
考研数学三
相关试题推荐
已知X=AX+B,其中求矩阵X.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
设函数f(x)在[0,π]上连续,且试证明在(0,π)内至少存在两个不同的点ξ1,ξ2使f(ξ1)=f(ξ2)=0.
[2007年]设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值.又f(a)=g(a),f(b)=g(b).证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
[2013年]设曲线y=f(x)与y=x2-x在点(1,0)处有公切线,则=_________.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
两曲线y=与y=ax2+b在点处相切,则()
假设随机变量X在区间[-1,2]上服从均匀分布,随机变量则方差D(Y)=__________.
当△x→0时α是比△x较高阶的无穷小量,函数y(x)在任意点x处的增量且y(0)=π,则y(1)=__________.
-3.把行列式的各行都加到第1行,得本题考查行列式的计算.注意4阶及4阶以上的行列式已不再具有对角线计算法则.高阶行列式的基本计算方法是利用行列式的性质简化计算,化为三角形行列式及按一行(列)展开(降阶)是计算中最常用的两种方法.元素是数字的行
随机试题
A.结节性甲状腺肿B.甲亢C.慢性淋巴细胞性甲状腺炎D.甲状腺腺瘤E.甲状腺癌自身免疫性疾病,常合并甲状腺功能减退
A.祛风散寒,燥湿健脾B.化湿,解暑C.化湿行气,安胎D.燥湿消痰,下气除满厚朴的功效是
下列各项中,不属于政府采购中供应商权利的是()。
股票交易特别处理分为警示存在中止上市风险的特别处理和其他特别处理。()
商业银行对借款人收入来源审查侧重点不适当的有()。
()认为,有时企业支付的薪酬高于市场薪酬水平,不仅不会增加劳动成本,反而会降低劳动成本。
凯旋门是为纪念战争胜利而建造的,通常单独横跨在道路两旁。()是罗马现存最晚的凯旋门。
《国家中长期教育改革和发展规划纲要(2010—2020年)》规定,我国学前教育的发展任务是:到2020年,普及学前一年教育,基本普及学前三年工作。()
ManyforeignerswhohavenotvisitedBritaincallalltheinhabitantsEnglish,fortheyareusedtothinkingoftheBritishIsle
Thehighestanxietymomentintheholidayseasonmustbethemomentjustbeforeyourlovedonesunwraptheirgifts.Theribbonc
最新回复
(
0
)