首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (Ⅱ)方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
admin
2019-03-21
66
问题
(17年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,
证明:
(I)方程f(x)=0在区间(0,1)内至少存在一个实根;
(Ⅱ)方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内至少存在两个不同实根.
选项
答案
(I)由题设知f(x)连续且[*]存在,所以f(0)=0. 由[*]与极限的保号性可知,存在a∈(0,1)使得[*]即f(a)<0. 又f(1)>0,所以存在b∈(a,1)[*](0,1),使得f(b)=0,即方程f(x)=0在区间(0,1)内至少存在一个实根. (Ⅱ)由(I)知f(0)=f(b)=0,根据罗尔定理,存在c∈(0,b)[*](0,1),使得 f’(c)=0. 令F(x)=f(x)f’(x),由题设知F(x)在区间[0,b]上可导,且 F(0)=0,F(c)=0,F(b)=0. 根据罗尔定理,存在ξ∈(0,c),η∈(c,b),使得F’(ξ)=F’(η)=0,即ξ,η是方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内的两个不同实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/4GV4777K
0
考研数学二
相关试题推荐
证明:x-x2<ln(1+x)<x(x>0).
求函数y=(x∈(0,+∞))的单调区间与极值点,凹凸区间与拐点及渐近线.
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
设A,B都是n阶矩阵,E-AB可逆.证明E-BA也可逆,并且(E-BA)-1=E+B(E-AB)-1A.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
设a,b均为常数,a>一2,a≠0,求a,b为何值时,使 ∫1+∞[一1]dx=∫01ln(1一x2)dx.
求曲线y=ex上的最大曲率及其曲率圆方程.
已知曲线L的方程406求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积。
设ρ=ρ(x)是抛物线y=上任一点M(x,y)(x≥1)处的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算3ρd2ρ/ds2-(dρ/ds)2的值。(在直角坐标系下曲率公式为K=)
随机试题
确定法人国籍的理论和实践概括起来有:_____、_____、_____、_____。
脂肪肝的特征,应除外
退行性核左移提示
背景资料某施工单位承包一套燃油加热炉安装的单位工程,包括加热炉、燃油供应系统、钢结构、工艺管线、电气动力与照明、自动控制、辅助系统等分部工程。项目部主管工程师编写了加热炉燃油泵等动力设备的单机试运行方案,并按规定进行了审批。燃油泵的
阅读以下文字,完成以下问题。2004年,生命科学研究虽然没有像前几年那样有许多新概念涌现,但具体成果并不逊于往年。生物医学与其他学科的交叉为生命科学的前进提供了强大的动力,蛋白质组学、干细胞与组织器官工程等方面的研究都取得了突破性进展,系统生物学逐
当前劳动密集型产业从沿海地区向中西部地区转移,说明劳动力成本因素起的作用越来越大,配套性和规模经济所起的作用相对变小。虽然中西部地区暂时还没有这种产业配套的聚集效应,但国内的中部省份和沿海地区,往往只有一河一山之隔,所以配套中心在国内范围的转移,比起向其他
结构转换
当前流行的计算机系统中,广泛采用由三种运行原理不同、性能差异很大的存储介质来构建计算机存储体系,在CPU与主存储器问加入______,构成由硬件管理的存储结构。
Themulti-billion-dollarWesternpopmusicindustryisunderfire.ItisbeingblamedbytheUnitedNationsforthedramaticris
Ourteacheralwaysavoids(give)______usdirectanswers.
最新回复
(
0
)