首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
admin
2017-12-29
51
问题
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
选项
答案
(Ⅰ)令F(x)=f(x)—1 +x,则F(x)在[0,1]上连续,且F(0) =—1<0,F(1)=1>0,于是由零点定理知,存在ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1—ξ。 (Ⅱ)在[0,ξ]和[ξ,1]上对f(ξ)分别应用拉格朗日中值定理知,存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4GX4777K
0
考研数学三
相关试题推荐
设总体X~N(μ,σ2),X1,X2,X3是来自X的样本,证明:估计量都是μ的无偏估计,并指出它们中哪一个最有效.
设f(x),g(x)在[a,b]上二阶可导,g"(x)≠0,f(A)=f(b)=g(A)=g(b)=0.证明:在(a,b)内至少存在一点ξ,使
若函数f(x)一asinx+处取得极值,则a=________.
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(A)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
求幂级数的收敛域与和函数,并求的和.
设数列{an)单调减少,的收敛域为()
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
[*]事实上,在几何上原题中积分应等于球体x2+y2+z2≤a2的体积的一半,因此应为
向平面区域D:x≥0,0≤y≤4一x2内等可能地随机地投掷一点.求(1)该点到y轴距离的概率密度;(2)过该点所作y轴的平行线与x轴、y轴及曲线y=4一x2所围成的曲边梯形面积的数学期望与方差.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)