首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明: (Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ; (Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
admin
2017-12-29
58
问题
己知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:
(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1一ξ;
(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1。
选项
答案
(Ⅰ)令F(x)=f(x)—1 +x,则F(x)在[0,1]上连续,且F(0) =—1<0,F(1)=1>0,于是由零点定理知,存在ξ∈(0,1),使得F(ξ)=0,即f(ξ)=1—ξ。 (Ⅱ)在[0,ξ]和[ξ,1]上对f(ξ)分别应用拉格朗日中值定理知,存在两个不同的点η∈(0,ξ),ζ∈(ξ,1),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4GX4777K
0
考研数学三
相关试题推荐
在区间[0,a]上|f(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(A)|≤Ma.
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
试证明:曲线恰有三个拐点,且位于同一条直线上.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设g(x)=,f(x)=∫0xg(t)dt.(1)证明:y=f(x)为奇函数,并求其曲线的水平渐近线;(2)求曲线y=f(x)与它所有水平渐近线及Oy轴围成图形的面积.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
计算二重积分(x2+y)dσ,其中D是由x2+y2=2y的上半圆,直线x=一1,x=1及x轴围成的区域.
设函数f(x)(x≥0)可微,且f(x)>0。将曲线y=f(x),x=1,x=a(a>1)及x轴所围成的平面图形绕x轴旋转一周得旋转体体积为,求:(I)f(x)的表达式;(Ⅱ)f(x)的极值。
随机试题
节律性起始技术是属于
有关HELLP综合征,以下哪项是错误的
中国现行版药典是
下列最适合使用美托洛尔治疗的疾病是
阿托品用于解除消化道痉挛时,常可引起口干,属于氯霉素或抗肿瘤药所致的骨髓抑制,属于
甲向首饰店购买钻石戒指二枚,标签表明该钻石为天然钻石,买回后被人告知实为人造钻石。甲遂多次与首饰店交涉,历时1年零6个月,未果。现甲欲以欺诈为由诉请法院撤销该买卖关系,其主张能否得到支持?( )。
货币市场基金同时以股票、债券为主要投资对象,通过不同资产类别的配置投资,实现风险和收益上的平衡。()
从绝对量的构成看,资本成本包括()。
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设二维随机变量(X,Y)满足E(XY)=EXEY,则X与Y
最新回复
(
0
)