首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知圆x2+y2=a2,求此圆绕x=-b(b>a>0)旋转所生成的旋转体的体积和表面积.
已知圆x2+y2=a2,求此圆绕x=-b(b>a>0)旋转所生成的旋转体的体积和表面积.
admin
2019-08-21
76
问题
已知圆x
2
+y
2
=a
2
,求此圆绕x=-b(b>a>0)旋转所生成的旋转体的体积和表面积.
选项
答案
(I)体积如图3—3所示, [*] 方法一:取积分变量为y,变化区间[0,a],体积元素为薄圆环,则 [*] 则体积为 [*] 方法二:取积分变量为x,变化区间为[-a,a],体积元素为圆柱形薄壳,则 [*] 则体积为 [*] 由于[*]为奇函数,在[-a,a]上的积分为0,[*]为偶函数,令x=asin t.所以 [*] (Ⅱ)表面积 [*]
解析
根据图形的对称性,只需对x轴以上的部分进行计算即可.
错例分析:在求旋转体表面积S时,若将面积元素也视为圆柱形薄壳的表面积,则有dS=2π(b+x)dx,由此得出
的错误结果.错误的原因在于:所找的微元dS=2π(b+x)dx与△S之差不是比dx高阶的无穷小.在用元素法解决实际问题时,这步是需要验证的.
转载请注明原文地址:https://kaotiyun.com/show/4KN4777K
0
考研数学二
相关试题推荐
求函数z=x2+y2+2x+y在区域D={(x,y)|x2+y2≤1)上的最大值与最小值.
设A是n阶正定矩阵,证明:|E+A|>1.
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anξ1;
已知矩阵A=(aij)3×3的第1行元素分别为a11=1,a12=2,a13=一1.又知(A*)T=,其中A*为A的伴随矩阵.求矩阵A.
设A=E+αβT,其中α=[a1,a2,…,an]T≠0,β=[b1,b2,…,bn]T≠0,且αTβ=2.求A的特征值和特征向量;
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向z轴负向无限伸展的平面图形记为D.求:(I)D的面积A;(Ⅱ)D绕直线X=1旋转一周所成的旋转体的体积V.
随机试题
决策与预测的关系。
女,20岁。发热、鼻出血、皮肤紫癜2周。查体:舌尖可见血疱,双下肢可见瘀斑,浅表淋巴结及肝、脾不大,胸骨压痛阴性。血常规:血红蛋白50g/L,白细胞2.0×109/L,中性粒细胞24%,淋巴细胞75%,嗜碱性粒细胞1%,血小板22×109/L,网织红细胞0
国家赔偿以()为主要方式。
根据证券交易所对证券公司自营业务管理的有关规定,会员应()编制库存证券报表。
在下列业务中,可以采用业务发生当期期初的市场汇率作为折算汇率的有()。
权利、许可证照实行按件贴花缴纳印花税。()(2015年)
M公司采用累计发生成本占预计合同总成本的比例确定完工进度,采用完工百分比法确认合同收入。M公司有关建造合同资料如下:(1)2010年M公司签订—项承担A工程建造任务的合同,该合同为固定造价合同,合同金额为1000万元。工程自2010年5月开工,预计201
小方、小艾、小宇、小路、小黄五人参加竞选。已知:如果小方所得的选票比小艾的多,或者小宇所得的选票比小路的多,那么小黄当选。如果竞选的结果,是小黄没有当选,则以下哪项论断一定成立?()
Itseemsthatpoliticiansaroundtheworldarethinkingaboutthehealthoftheircountries.WhileinChina,ChenZhuhasannoun
AnewlookatanasteroidorbitingthesunshowsitcouldpossiblysmashintotheEarthwithtremendousforce.Butexpertssay
最新回复
(
0
)