首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
admin
2018-11-11
48
问题
设f(x)在(-∞,+∞)内二次可导,令F(x)=
求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(x)的定义及题设可知F(x)分别在(-∞,x
0
],(x
0
,+∞)连续,分别在(-∞,x
0
),(x
0
,+∞)二次可导.从而,为使F(x)在(-∞,+∞)二次可导,首先要使F(x)在x=x
0
右连续,由于F(x
0
-0)=f(x
0
)=f(x
0
),F(x
0
+0)=C,故 F(x)在(-∞,+∞)连续[*]C=f(x
0
). 在C=f(x
0
)的情况下,F(x)可改写成 [*] 从而 [*] F’
-
(x
0
)=f’(x
0
),F’
+
(x
0
)=B. 故 F(x)在(-∞,+∞)可导[*]B=f’(x
0
). 在C=f(x
0
),B=f’(x
0
)的情况下,F(x)可改写成 [*] 且 [*] 进而 [*] 故 F(x)在(-∞,+∞)内二次可导[*] 2A=f’’(x
0
)[*]f’’(x
0
). 综合得,当A=[*]f’’(x
0
),B=f’(x
0
),C=f(x
0
)时F(x)在(-∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/fJj4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[a,b]上连续,且∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt证明:∫abxf(x)dx≤∫abxg(x)dx.
设H(x)=∫0xf(t)g(x一t)dt,其中g(x)=f(x)=x,求H(x).
设X在区间(0,1)上服从均匀分布,在X=x(0<x<1)条件下Y在(0,x)上服从均匀分布,求(1)X与Y的联合概率密度f(x,y)及P(X+Y>1);(2)Y的概率密度fY(y).
设x∈(0,1),证明:(1)(1+x)ln2(1+x)<x2;(2)
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α1,α2,α3,α4,α5)x=α5的通解.
设矩阵A=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
已知函数f(u,v)具有连续的二阶偏导数f(1,1)=2是f(u,v)的极值,已知z=f(x+y)f(x,y)].求
随机试题
认为卢梭的错误在于把个人自由和人民主权混在一起的思想家是
化学物危险度评价的内容不包括
中国人民银行为社会提供低成本、大业务量的支付清算服务而建设的支付系统统称为()。
根据企业破产法律制度的规定,申请人向人民法院提出破产申请后,在一定期限内可以撤回破产申请,该期限是()。
我国旅游景区的质量等级划分为四级,最高为4A级旅游景区。()
根据现行《宪法》规定,关于公民权利和自由,下列哪一选项是正确的?()
我国现行《选举法》规定,全国人民代表大会的名额不超过()人。
某公司在转产时以极低的价格抛售库存商品。根据我国法律,该行为属于()。
InNewYork,consumershadtopayforbeveragecontainersandcouldgettheirmoneybackonreturningthem.Thekeyproblemin
Sportisnotonlyphysicallychallenging,butitcanalsobementallychallenging.Criticismfromcoaches,parents,andotherte
最新回复
(
0
)