首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
设f(x)在(-∞,+∞)内二次可导,令F(x)=求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
admin
2018-11-11
58
问题
设f(x)在(-∞,+∞)内二次可导,令F(x)=
求常数A,B,C的值使函数F(x)在(-∞,+∞)内二次可导.
选项
答案
对任何常数A,B,C,由F(x)的定义及题设可知F(x)分别在(-∞,x
0
],(x
0
,+∞)连续,分别在(-∞,x
0
),(x
0
,+∞)二次可导.从而,为使F(x)在(-∞,+∞)二次可导,首先要使F(x)在x=x
0
右连续,由于F(x
0
-0)=f(x
0
)=f(x
0
),F(x
0
+0)=C,故 F(x)在(-∞,+∞)连续[*]C=f(x
0
). 在C=f(x
0
)的情况下,F(x)可改写成 [*] 从而 [*] F’
-
(x
0
)=f’(x
0
),F’
+
(x
0
)=B. 故 F(x)在(-∞,+∞)可导[*]B=f’(x
0
). 在C=f(x
0
),B=f’(x
0
)的情况下,F(x)可改写成 [*] 且 [*] 进而 [*] 故 F(x)在(-∞,+∞)内二次可导[*] 2A=f’’(x
0
)[*]f’’(x
0
). 综合得,当A=[*]f’’(x
0
),B=f’(x
0
),C=f(x
0
)时F(x)在(-∞,+∞)上二次可导.
解析
转载请注明原文地址:https://kaotiyun.com/show/fJj4777K
0
考研数学二
相关试题推荐
设x为n维列向量,且xTx=1,若A=E一xxT,则|A|=0.
求函数f(x)=的间断点,并判别其类型.
设函数f(x)在x0处可导,且f(x0)≠0,求
对数螺线r=eθ在(r,θ)=处的切线的直角坐标方程.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求可逆矩阵P,使得P一1AP为对角矩阵.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
设函数f(x)=如果f"(0)存在,求常数a,b.
计算下列反常积分(广义积分)的值.
设P(χ)在[0,+∞)连续且为负值,y=y(戈)在[0,+∞)连续,在(0,+∞)满足y′+P(χ)y>0且y(0)≥0,求证:y(χ)在[0,+∞)单调增加.
随机试题
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
杆式泵有内外两个工作筒,()装有锥体座及卡簧。
心动周期中,占时间最长的是()
某男,41岁。脘腹胀痛,硬痛拒按,下利纯稀水,身热口渴,神倦少气,谵语,舌苔焦黄,脉虚。治疗当首选
采用()适用于由于不能确定工作范围或规模等原因无法准确定价的工程。
下列各项中,应通过“其他应付款”科目核算的是()。
关于记账式国债的中标原则,下列说法错误的是( )。
犯罪嫌疑人在侦查阶段可以聘请律师的时间是()。
Whatisthemaintopicoftheconversation?
A、havefewinterestsintheinformationprovidedbyNorberg-HodgeB、canunderstandtheinformationC、feelashamedoftheirbackw
最新回复
(
0
)