首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线Y=ax2围成一平面图形D,求 (I)D绕x轴旋转一周所成的旋转体的体积V(A); (II)a的值,使V(x)为最大。
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线Y=ax2围成一平面图形D,求 (I)D绕x轴旋转一周所成的旋转体的体积V(A); (II)a的值,使V(x)为最大。
admin
2018-11-11
100
问题
设曲线y=ax
2
(x≥0,常数a>0)与曲线y=1一x
2
交于点A,过坐标原点O和点A的直线与曲线Y=ax
2
围成一平面图形D,求
(I)D绕x轴旋转一周所成的旋转体的体积V(A);
(II)a的值,使V(x)为最大。
选项
答案
由题意知,y=ax
2
与y=1一x
2
的交点为[*]直线OA的方程为 [*] (I)旋转体的体积[*] (II)当a>0时,得V(A)的唯一驻点a=4。当0<a<4时,V’(A)>0;当a>4时,V’’(A)<0。故a=4为V(A)的唯一极大值点,即为最大值点。
解析
转载请注明原文地址:https://kaotiyun.com/show/tJj4777K
0
考研数学二
相关试题推荐
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:对任意一个n维实列向量α,α与Aα正交;
求直线在平面π:x一y+2z—1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
已知函数z=f(x,y)的全微分dz=2xdx一2ydy,并且f(1,1)=2.求z=f(x,y)在椭圆域D=上的最大值和最小值.
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设连续型随机变量X的概率密度为f(x),分布函数为F(x),当x>0时满足xf’(x)=(1一x)f(x),当x≤0时,f(x)=0.问常数a为何值时,概率P{a<X<a+1}最大.
利用代换将y"cosx-2y’sinx+3ycosx=ex化简,并求原方程的通解.
已知函数f(u,v)具有连续的二阶偏导数f(1,1)=2是f(u,v)的极值,已知z=f(x+y)f(x,y)].求
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
地球上两个最大的碳储存库为岩石圈和_______。
丹毒的致病菌是
不安抗辩权的适用条件不包括()。
以下被认为是“一个或多个控制缺陷的组合,可能严重影响内部整体控制的有效性,进而导致企业无法及时防范或发现严重偏离整体控制目标的情形”的是()。
用正交表安排试验时,通过方差分析发现因子A及交互作用A×B都是显著的,但C、D是不显著的,那么应按()寻找最好条件。
“学校下半年生源锐减,教师严重超编,不愿上早晚自修和补课的同志可以去其他学校另谋高就。”这种说法违反了()。
王方将5万元存入银行,银行利息为1.5%/年,请问两年后,它的利息是多少?
Whatisbeingannounced?
Doctor:______Patient:I’mmuchbetter.Mystomachproblemisgone.NowIjustfeelhungry.
BossesSay"Yes"toHomeWorkA)Risingcostsofofficespace,timelosttostressfulcommuting,andaslowrecognitionthatwork
最新回复
(
0
)