首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明: 在开区间(a,b)内g(x)≠0;
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明: 在开区间(a,b)内g(x)≠0;
admin
2018-12-19
104
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:
在开区间(a,b)内g(x)≠0;
选项
答案
利用反证法。假设存在c∈(a,b),使得g(c)=0,则根据题意,对g(x)在[a,c]和[c,b] 上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 接着再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g’’(ξ
3
)=0成立,这与题设条件g’’(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/4Nj4777K
0
考研数学二
相关试题推荐
(2002年)设f(χ)=,求函数F(χ)=∫-1χf(t)dt的表达式.
(1996年)由曲线y=χ+,χ=2及y=2所围图形的面积S=________.
(2004年)设函数z=z(χ,y)由方程z=e2χ-3z+2y确定,则3=________.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(1993年)求微分方程(χ2-1)dy+(2χy-cosχ)dχ=0满足初始条件y|χ=1=1的特解.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=aijxixj在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
随机试题
“既要严肃,又要活泼”和“不但要数量,而且要质量”所具有的共同的逻辑形式,若用p、q作变项,可表示为______。
浏览器和服务器之间通过____________协议进行通信。
Didyoueverhavesomeone’snameonthetipofyourtongueandyetyouwereunabletorecallit?【C1】______thishappensagain,do
下列选项中,不符合继发性肺结核特点的是
患者,女性,29岁,产后受寒,恶露不行,小腹冷痛,喜温拒按,面色青白者。治疗当首选
外果皮散有油细胞的药材为
某企业市场销售部绩效考核指标与标准一览表关于“指标”与“标准”理解正确的是()。
在我国实现现代化之前经济发展每隔几年上一个台阶所含的哲理是
Readtheletterbelow.ChoosethebestwordtofillineachgapfromA,B,CorDontheoppositepage.Foreachquestion19—33
HarrietTubmanwasbornin1820,intoaterribleworld.Shewasoneoftwelvechildrenborntoaslavecouple.Shestartedwork
最新回复
(
0
)