首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
admin
2020-10-21
48
问题
求微分方程y"+4y’一5y=(3x一1)e
x
满足初始条件y(0)=0,y’(0)=1的特解.
选项
答案
(1)先求y"+4y’一5y=0的通解. 特征方程为r
2
+4r一5=0,解得r
1
=一5,r
2
=1,所以y"+4y’一5y=0的通解为 Y=C
1
e
-5x
+C
2
e
x
,其中C
1
,C
2
为任意常数. (2)其次求y"+4y’ —5y=(3x—1)e
x
的一个特解. 因为λ=1是特征单根,令其一个特解为y
*x
=x(Ax+B)e
x
,则 (y
*
)’=(2Ax+B+Ax
2
+Bx)e
x
, (y
*
)"=(2A+4Ax+2B+Ax
2
+Bx)e
x
, 将其代入原方程,并消去e
x
,得 2A+6B+12Ax=3x一1, 比较等式两边x的系数,得 [*] 解得[*] (3)写出y"+4y’一5y=(3x—1)e
x
的通解为 [*],其中C
1
,C
2
为任意常数. 则 [*] 由y(0)=0,y’(0)=1,得 [*] 解得C
1
=一[*],C
2
=[*],故所求特解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/4T84777K
0
考研数学二
相关试题推荐
设f(x,y)连续,且其中D表示区域0≤x≤1,0≤y≤1,则=()
A、 B、 C、 D、 D
当a,b为何值时,β可由a1,a2,a3线性表示,写出表达式。
设A是n阶矩阵,下列结论正确的是()。
设A为三阶实对称矩阵,a1=(m,m-1)T是方程组AX=0的解,a2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=___.
设f(x)在[0,a]上一阶连续可导,f(0)=0,在(0,a)内二阶可导且f"(x)>0。证明:。
设非齐次线性微分方程yˊ+p(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
[2003年]设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:在(a,b)内存在与(2)中手相异的点η,使f′(η)(b2一a2)=f(x)dx.
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
设e-x2是f(x)的一个原函数,下述两个反常积分(Ⅰ)=x4f′(x)dx,(Ⅱ)=x3f″(x)dx,正确的结论是()
随机试题
精力旺盛、表里如一、刚强、易感情用事,这是哪种气质类型的特点()
男性,30岁,1年前下岗。近5个月来觉得邻居都在议论他,常不怀好意地盯着他,有时对着窗外大骂,自语、自笑,整天闭门不出,拨110电话要求保护。该病人不存在
A.DB.ZC.FD.F0E.TZ值为10℃,一定灭菌温度所产生的灭菌效果与121℃产生的灭菌效力相同时所相当的时间是()
在评价投保申请时,承保人通常十分重视中介人的()
福费廷是英文forfaiting的音译,意为放弃,这种放弃包括()。
著名的张家店战役与下列()景点有关。
社区建设的基本原则有()。
合理确定作业组的规模一般为()人左右为宜。
随着资本一帝国主义的人侵,中国的民族危机和社会危机日益加深,中国社会各阶级都面临着“怎么办”的问题。其中,中国资产阶级提出的主张和方案是()。
在关系模型中,每个关系模式中的关键字
最新回复
(
0
)