首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f’’(x0)=0,f’’’(x0)>0,则下列结论正确的是( ).
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f’’(x0)=0,f’’’(x0)>0,则下列结论正确的是( ).
admin
2017-02-28
66
问题
设f(x)在x
0
的邻域内三阶连续可导,且f’(x
0
)=f’’(x
0
)=0,f’’’(x
0
)>0,则下列结论正确的是( ).
选项
A、x=x
0
为f(x)的极大点
B、x=x
0
为f(x)的极小点
C、(x
0
,f(x
0
))为曲线y=f(x)的拐点
D、(x
0
,f(x
0
))不是曲线y=f(x)的拐点
答案
C
解析
由极限的保号性,存在δ>0,当0<|X—x
0
|<δ时,
当x∈(x
0
-δ,x
0
)时,f’’(x)<0;当x∈(x
0
,x
0
+δ)时,f’’(x)>0,则(x
0
,f(x
0
))为曲线y=f(x)的拐点,选C.
转载请注明原文地址:https://kaotiyun.com/show/4TH4777K
0
考研数学三
相关试题推荐
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)所满足的一阶微分方程;
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
已知下列齐方程组(I)(Ⅱ)
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=的
假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(EX)为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间y的分布函数F(y).
差分方程yx+1-3yx=7*2x的通解为_________.
将函数展开成x-1的幂级数,并指出其收敛区间.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
随机试题
简述公正审判原则。
男,25岁,一年来牙龈逐渐肿大。检查发现:全口牙龈乳头及龈缘肿胀,上下前牙明显,龈乳头球状突起,前牙龈呈分叶状,质地坚硬,龈沟加深,有菌斑。为进一步确诊,首先需检查项目是()
以下隧道注浆材料中属于化学浆的是()。
下列选项中,不属于项目经理部成本管理工作内容的是()。
某兴趣组有男女生各5名,他们都准备了表演节目。现在需要选出4名学生各自表演1个节目,这4人中既要有男生、也要有女生,且不能由男生连续表演节目。那么,不同的节目安排有多少种?
人生就是这样坎坎坷坷,曲曲折折,有直,就会有曲,谁的人生,都不会一帆风顺。痛苦是常有的,遗憾是常见的。有的人,于平凡中含着伤痛;有的人,于痛苦中带着微笑;不同的人,有着不同的情形。生命总是眷恋着坚定,厌倦着沉沦。告诉自己,________。填入画横线部分
Scientistssaytheyhavefoundkeycluesintohowlongwewilllive.Oneofthemisa【C1】______handshake.Britishresearchersbe
设二次型f(x1,x2,x3)=xTAx=x12+5x22+x32-4x1x2+2x2x3,则对任意x≠0,均有().
【T1】Whiletherearealmostasmanydefinitionsofhistoryastherearehistorians,modernpracticemostcloselyconformstoone
Wheredofishlive?Theylive______wherethereiswater.
最新回复
(
0
)