首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f’’(x0)=0,f’’’(x0)>0,则下列结论正确的是( ).
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f’’(x0)=0,f’’’(x0)>0,则下列结论正确的是( ).
admin
2017-02-28
61
问题
设f(x)在x
0
的邻域内三阶连续可导,且f’(x
0
)=f’’(x
0
)=0,f’’’(x
0
)>0,则下列结论正确的是( ).
选项
A、x=x
0
为f(x)的极大点
B、x=x
0
为f(x)的极小点
C、(x
0
,f(x
0
))为曲线y=f(x)的拐点
D、(x
0
,f(x
0
))不是曲线y=f(x)的拐点
答案
C
解析
由极限的保号性,存在δ>0,当0<|X—x
0
|<δ时,
当x∈(x
0
-δ,x
0
)时,f’’(x)<0;当x∈(x
0
,x
0
+δ)时,f’’(x)>0,则(x
0
,f(x
0
))为曲线y=f(x)的拐点,选C.
转载请注明原文地址:https://kaotiyun.com/show/4TH4777K
0
考研数学三
相关试题推荐
设齐次线性方程组其中a≠O,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?存有无穷多组解时,求出全部解,并用基础解系表示全部解.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,P)T.P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示.下列命题正确的是
设螺旋形弹簧一圈的方程为x=acost,y=asint,z=bt(0≤t≤2π),它的线密度ρ(x,y,z)=x2+y2+z2,求:(1)它关于z轴的转动贯量Iz;(2)它的质心.
设生产某商品的固定成本60000元,可变成本为20元/件,价格函数为p=60-Q/1000,(p是单价,单位:元;Q是销量,单位:件).已知产销平衡;当P=50时的边际利润,并解释其经济意义;
当x→时,下列四个无穷小量中,()是比其他三个更高阶的无穷小量,
假设一厂家生产的每台仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,经调试后以概率0.80可以出厂,以概率0.20定为不合格品不能出厂,现该厂新生产了n(n≥2)台仪器(假设各台仪器的生产过程相互独立),求:(I)全部能出厂的概率a;(Ⅱ
求幂级数(|x|<1)的和函数s(x)及其极值.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
设且A~B.(1)求a;(2)求可逆矩阵P,使得P-1AP=B.
随机试题
离心泵安装时应注意哪些事项?
A.大汗淋漓,四肢厥冷,面色苍白,神情淡漠,呼吸微弱,脉微欲绝B.形体消瘦,五心烦热,颧红盗汗,口燥咽干,皮肤干燥,脉象细数C.身热大汗,汗热质黏,面色潮红,躁扰不安,渴喜冷饮,脉细数疾D.高热肢厥,神识昏沉,胸腹灼热,口渴喜饮,面色紫暗,脉沉有力
出现月经是由于血液中哪种激素浓度急剧下降所致
静脉注射用脂肪乳剂的乳化剂常用的有
胸骨角两侧平对()。
在每天作业前,使用单位应进行起重机的每日检查,下列()项检查不属每日必检项目。
浙江浙海服装进出口公司(3313910194)在对口合同项下进口蓝湿牛皮,委托浙江嘉宁皮革有限公司(3313920237)加工牛皮沙发革。承运船舶在帕腊纳瓜港装货启运,航经大阪,又泊停釜山港转“HANSASTAVANGER”号轮HV300W航次(提单号:H
信息技术教育是我国新的基础教育课程体系中设置的选修课程,是一门知识性与技能性相结合的基础工具课程。()
短板理论是指木桶的盛水量是由组成木桶的木板中最短的一块决定的,这块短板即为这个木桶盛水量的“限制因素”。根据上述定义,下列不符合短板理论的是()。
食用加碘盐可以预防甲状腺肿大,但摄入过多的碘可能会对人体产生危害。对此,有专家指出,只要食用加碘盐的量不超过专业部门规定的标准,就完全可以避免这种危害。因此,人们对于食用加碘盐的担心是毫无必要的。要使上述结论成立,所需要的前提是:
最新回复
(
0
)