首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-09-25
58
问题
设向量α
1
,α
2
,…,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
若有一组数k,k
1
,…,k
t
使得kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0,① 由于α
1
,α
2
,…,α
t
是Ax=0的解,所以Aα
i
=0(i=1,2,…,t),用A左乘①式两端,则有 kAβ+k
1
(Aβ+Aα
1
)+…+k
t
(Aβ+Aα
t
)=0, 即(k+k
1
+…+k
t
)Aβ=0,而Aβ≠0,所以k+k
1
+…+k
t
=0. 而由①式整理可得:(k+k
1
+…+k
t
)β+k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0,所以k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0.因为α
1
,α
2
,…,α
t
是基础解系,因而线性无关,所以k
1
=k
2
=…=k
t
=0. 而由k+k
1
+…+k
t
=0,可得k=0.所以向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Wx4777K
0
考研数学三
相关试题推荐
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
设可导函数y=y(x)由方程xsint2dt确定.则=________.
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0且=2,证明:(I)存在a>0,使得f(a)=1;(Ⅱ)对(I)中的a,存在ξ∈(0,a),使得f’(ξ)=。
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
随机试题
所有的高级军政官员完全由皇帝指派,皇帝的意志成为唯一的法律。这指的是()
在变化的市场环境中效率较高的组织结构是()
A.甘氨酸B.色氨酸C.酪氨酸D.谷氨酸(2007年第109题)去甲肾上腺素合成的原料是
5岁男孩,患支气管哮喘,从1岁至5岁类似喘息发作4次,肺功能明显降低,舒张试验阳性。2d前因感冒再次诱发咳喘发作,使用口服和局部糖皮质激素和支气管舒张剂无缓解。查体:面色青灰,呼吸困难,大汗淋漓,不能平卧,三凹症,心音较低钝,双肺呼吸音降低,无哮鸣音。此
柴胡疏肝散合胃苓汤最适合治下列何种鼓胀:
在心房颤动的治疗中,下列措施不正确的是
张护士准备用纯乳酸对换药室进行空气消毒,换药室长4m,宽5m,高3m,需乳酸量
土地估价计算总费用是指为创造收益所投入的直接必要的()。
享有过渡性养老金的人是()。
根据《合同法》的规定,下列关于承揽合同的说法不正确的有()。
最新回复
(
0
)