首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2020-09-25
82
问题
设向量α
1
,α
2
,…,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0,试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
若有一组数k,k
1
,…,k
t
使得kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0,① 由于α
1
,α
2
,…,α
t
是Ax=0的解,所以Aα
i
=0(i=1,2,…,t),用A左乘①式两端,则有 kAβ+k
1
(Aβ+Aα
1
)+…+k
t
(Aβ+Aα
t
)=0, 即(k+k
1
+…+k
t
)Aβ=0,而Aβ≠0,所以k+k
1
+…+k
t
=0. 而由①式整理可得:(k+k
1
+…+k
t
)β+k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0,所以k
1
α
1
+k
2
α
2
+…+k
t
α
t
=0.因为α
1
,α
2
,…,α
t
是基础解系,因而线性无关,所以k
1
=k
2
=…=k
t
=0. 而由k+k
1
+…+k
t
=0,可得k=0.所以向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Wx4777K
0
考研数学三
相关试题推荐
设三阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=__________。
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为________.
微分方程y"+2y’+5y=0的通解为________。
设可导函数y=y(x)由方程xsint2dt确定.则=________.
已知方程组与方程(2)x1+5x3=0,则(1)与(2)的公共解是________。
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
(87年)求矩阵A=的实特征值及对应的特征向量.
随机试题
患者,男,28岁。门诊侯诊时,突感腹痛难忍。护士观察:患者面色苍白,出冷汗。两手冰冷,呼吸急促。护士应采取的措施是
下列哪种观点不符合爆炸和火灾危险环境的电力装置设计的有关规定?()
下列情况中,需要将泡沫液送至检测单位进行检测的是()。
下列关于质押的说法,错误的是()。
维护公民合法权益的执法机关是()。
2003年该省沿海开放地区生产总值比2002年增长了( )。与2002年相比,对2003年经济指标判断正确的是( )。
微分方程xy’+2y=xlnx满足y(1)=的解为________。
—WouldyoumindifIopenthewindowforabetterview?—_______.
She______somesaltonherfoodtomakeittastebetter.
CLUBSFORSTUDENTSThereareavarietyofClubswhichprovidesocialandculturalactivitiesforthosewishingtomeetotherswi
最新回复
(
0
)