首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
admin
2021-08-02
87
问题
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于
,求f(x)的一般表达式.
选项
答案
曲线y=f(x)在其上点(x,f(x))处的切线方程可设为Y一f(x)=f’(x)(X—x). 令X=0,可得在y轴上的截距为f(x)一xf’(x).依题设有 f(x)—xf’(x)=[*]∫
0
x
f(t)dt,即∫
0
x
f(t)=xf(x)—x
2
f’(x). 将上式两端关于x求导,可得 xf”(x)+f’(x)=0. 令u=f’(x),u’=f”(x),上述方程可化为xu’+u=0.分离变量且两端积分得 ln|u|=一ln|x|+ln C(C>0), 题中已知x>0,故 ln|u|=一lnx+In C=[*] [*] 即 [*] 两端分别积分可得f(x)=C
1
lnx+C
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/4Xy4777K
0
考研数学二
相关试题推荐
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β()
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设f(χ)有二阶连续导数,且f′(0)=0,=-1,则【】
证明曲线上任一点的切线在两坐标轴上的截距之和为常数.
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
随机试题
(2019年烟台经开区)在托尔曼的白鼠走迷宫实验中,白鼠在没有获得强化前,学习就已经发生了的现象是典型的潜伏学习。()
试述矛盾的普遍性和特殊性辩证关系的原理,并说明这一原理对我国社会主义建设的重要意义。
门静脉和腔静脉系的重要吻合存在于
关于行政许可的设定方式,下列说法不正确的是:
一般说来,营业周期越长,在其他条件不变的前提下,表明企业的短期偿债能力越差。()
2×17年12月1日,甲公司将某项账面余额为1000万元的应收账款(已计提坏账准备200万元)转让给丁投资银行,转让价格为当日公允价值750万元;同时与丁投资银行签订了应收账款的回购协议。同日,丁投资银行按协议约定支付了750万元。该应收账款在2×17年1
Isoldmyapartment______aniceprice.
《我国》刑法第133条规定:“违反交通运输管理法规,因而发生重大事故,致人重伤、死亡或者使公私财产遭受重大损失的,处三年以下有期徒刑或者拘役;交通运输肇事后逃逸或者有其他特别恶劣情节的,处三年以上七年以下有期徒刑;因逃逸致人死亡的,处七年以上有期徒刑。”
设随机变量X的概率密度为f(χ)=试求:(Ⅰ)常数C;(Ⅱ)概率P{<X<1};(Ⅲ)X的分布函数.
设y=f(x)=(I)讨论f(x)在x=0处的连续性.(Ⅱ)求f(x)的极值点与极值.
最新回复
(
0
)