首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-08-12
97
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值.其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值。若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
=-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选D.
转载请注明原文地址:https://kaotiyun.com/show/MSN4777K
0
考研数学二
相关试题推荐
设向量α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).问:a,b为何值时,β不能用α1,α2,α3,α4线性表示;a,b为何值时,β能用α1,α2,α3,α4线性
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形为
设向量α=(1,0,-1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE-An|=_______.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
(1)设D=((x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明:(2)设D为xOy平面上的区域,若f"xy与f"yx都在D上连续,证明:f"xy与f"yx在D上相等.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位矩阵.求方阵A的伴随矩阵A*的一个特征值.
求函数的导数:y=aax+axx+axa+aaa(a>0).
求极限:
微分方程y"+4y=2x2在原点处与直线y=x相切的特解为__________.
设f(x)在x=a的邻域内有定义,且f’+(a)与f’-(a)都存在,则().
随机试题
患者,男性,40岁,多年来全口牙反复肿胀,曾做过多次治疗,近5~6天再次加重。检查全口牙龈肿,充血,触之出血,肿胀明显,牙周袋超过5mm,压溢脓,X线检查,全口多数牙槽骨有不同程度吸收,无龋。全身乏力,饮食量比一般人大,尿量也多。在下列项目中特别需要检
WHO推荐使用的口服补液盐的钾浓度及液体张力为钾张力
下列有关鉴定的情形中,属于可以申请重新鉴定的有()。
【真题(初级)】按照我国有关法规的规定,企业的税后利润可用于()。
童年儿童游戏属于()。
某县打算在县中心城区建设一个城市广场,决定作出后,县政府成立了由副县长为组长、15人组成的城市广场建设领导指挥办公室,购置各种办公设备花费20万元。然后开始进行拆迁工作,动用3000元安置被迁居民、商户,又请专家进行规划设计,花费了400万元。为了建设一个
根据下面的统计表回答121~125题能源消费构成中,从1981年到1986年变化比例最大的是()。
求
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【C1】______astudy
Onesummernight,onmywayhomefromworkIdecidedtoseeamovie.IknewthetheatrewouldbeairconditionedandIcouldn’tf
最新回复
(
0
)