首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值.其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-08-12
93
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值.其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值。若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
=-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选D.
转载请注明原文地址:https://kaotiyun.com/show/MSN4777K
0
考研数学二
相关试题推荐
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T,试讨论当a,b为何值时,(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表示式;(Ⅲ)β
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λn,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_______.
已知ξ=是矩阵A=的一个特征向量.(1)试确定a,b的值及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.确定常数a,使得f(x)在x=0处连续;
求极限
确定常数a和b的值,使f(χ)=χ-(a+b)sinχ当χ→0时是χ的5阶无穷小量.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
设f(χ)连续可导,g(χ)在χ=0的邻域内连续,且g(0)=1,f′(χ)=-sin2χ+∫0χg(χ+t)dt,则()
随机试题
下列各项中正确的有()。
看懂站场工艺安装图不仅需要熟悉各种图例符号,还需要熟悉设备的()。
属于类固醇激素的有
A.骨的缺血性坏死B.血管损伤C.神经损伤D.骨的延迟愈合E.骨筋膜室综合征腓骨头,颈骨折易引起
一原发性甲亢患者在局麻下行甲状腺大部分切除术,术后12小时病人感颈部憋胀,呼吸困难、发绀、切口处敷料呈红色、颈部肿胀,应立即采取哪项措施
一中年男性从汽车上摔下6小时,左枕部着力,昏迷,右侧瞳孔散大,光反射(-),左侧肢体偏瘫,左侧病理征(+)。诊断首先考虑()
A、B、C、D、D
当工程质量缺陷经过修补处理后不能满足规定的质量标准要求,或不具备补救可能性,则必须采取( )。
我国改革开放和社会主义现代化建设人数最多、最基本的依靠力量是()
Fallingsalesandrisingoverheadshaveobligedthecompanytorevieweachcustomer’s________limit.
最新回复
(
0
)