首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明: r(ATA)=r(A);
设A是m×n阶实矩阵,证明: r(ATA)=r(A);
admin
2016-07-22
46
问题
设A是m×n阶实矩阵,证明:
r(A
T
A)=r(A);
选项
答案
设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故AX=0的基础解系(含n-r
1
个无关解)含于A
T
AX=0的某个基础解系(含n-r
2
个无关解)之中,所以n-r
1
≤n-r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则(AX)
T
(AX)=[*],必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组Ax=0,从而有 n-r(A
T
A)≤≤n-r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A).
解析
转载请注明原文地址:https://kaotiyun.com/show/4cw4777K
0
考研数学一
相关试题推荐
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0,证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,证明:存在ξ∈(0,3),使得f’(ξ)=0.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
n阶矩阵A满足A2-2A-3E=O,证明:A能相似对角化.
设L为取正向的圆周x2+y2=1,则∮L(ey+2y)dx-(cosy-xey)dy=________.
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
随机试题
下列哪项不属于艾灸
土地使用税的纳税人是拥有土地使用权的单位和个人,土地使用权共有的,共有各方应按其实际分推,的()缴纳城镇土地使用税。
工程网络计划的资源优化是指通过改变( ),使资源按照时间的分布符合优化目标。
某些混凝土结构表面出现蜂窝、麻面,经调查分析,该部位经修补处理后,不会影响其使用及外观,则应采取的事故处理方法是()。
甲小麦贸易商拥有一批现货,并做了卖出套期保值。乙面粉加工商是甲的客户,需购进一批小麦,但考虑价格会下跌,不愿在当时就确定价格,而要求成交价后议。甲提议基差交易,提出确定价格的原则是比10月期货价低3美分/蒲式耳,双方商定给乙方20天时间选择具体的期货价。乙
2015年3月l0日,A公司通过互联网发布广告称其有一批优质木材出售,价格为每立方米3500元,并附有图片和规格。B公司见到后,即向A公司发出电子邮件,称如果价格能降低至每立方米2500元,愿意至少购买100立方米。A公司以电子邮件回复,可以商量,希望面谈
2015年政府工作报告中指出,2014年,我国经济运行处于合理区间,增速较稳,国内生产总值达到63.6万亿元,比上年增长()。
隐性伤害,就是指在校园情境中由于教育方法、管理方式的不完善或失当等对学生身体和精神所造成的非直接的伤害。这种伤害,由于其伤害结果具有潜在性和迟滞性,很容易被人们所忽视,但它往往会对少年儿童脆弱的心灵造成无法估量的消极影响。根据上述定义,下列不属于隐性伤害的
公安赔偿是国家赔偿的一种,包括()。
Whatisthepurposeofthemessage?
最新回复
(
0
)