首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
admin
2022-06-30
48
问题
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
选项
A、B的行向量组线性无关
B、B的列向量组线性无关
C、A
-1
=B
D、|AB|=|A||B|
答案
B
解析
由AB=E得r(AB)=n,从而r(A)≥n,r(B)≥n,
又r(A)≤n,r(B)≤n,所以r(A)=n,r(B)=n,
故B的列向量组线性无关,应选(B).
转载请注明原文地址:https://kaotiyun.com/show/o1f4777K
0
考研数学二
相关试题推荐
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中可以作为导出组Ax=0的解向量有()个。
设a1,a2,...am与Β1,Β2...Βs为两个n维向量组,且r(a1,a2,...am)=r(Β1,Β2...Βs)=r,则()。
设u=f(χ+y,χz)有二阶连续的偏导数,则=().
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x
设f(x)为二阶可导的奇函数,且x
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
行列式
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
随机试题
高效液相色谱法用于含量测定时,对系统性能的要求
刚体作平动时,某瞬时体内各点的速度与加速度为:
()的主要投资对象是资本市场上的上市股票与债券,货币市场上的短期票据与银行同业拆借,以及金融期货、黄金、期权交易、不动产等。
根据现行国家工程建设消防技术标准的要求,下列供暖系统的设置不符合相关规定的是()。
居民乙因拖欠居民甲180万元款项无力偿还,2010年6月经当地有关部门调解,以房产抵偿该笔债务,居民甲因此取得该房产的产权并支付给居民乙差价款20万元。假定当地省政府规定的契税税率为5%。下列表述中正确的是()。(2010年)
阅读下列材料:为了让高中一年级学生能够完整地体验信息处理的全过程,教师通常会设计一个综合性的主题学习活动。“我的悠长假期”主题学习活动即以图像处理为栽体,让学生体验信息采集、加工与表达的全过程。下面是本次主题活动方案:活动目的:以图片处理为载体体验信息
“三弦”这种乐器属于民族乐器中的()类。
元认知指的是对认知的认知,即认知主体关于自己认知过程的知识和调节这些过程的能力,对思维和学习活动的知识和控制。元认知的实质是对认知活动的自我意识和自我调节。根据上述定义,以下包含元认知的是()。
DerVatergibt______TochterdenWagen.
I_______thepicturefromthewallinordertocleanit.
最新回复
(
0
)