首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l1年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
[20l1年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
admin
2019-05-10
40
问题
[20l1年] 设向量组α
1
=[1,0,1]
T
,α
2
=[0,1,1]
T
,α
3
=[1,3,5]
T
不能由向量组β
1
=[1,l,1,]
T
,β
2
=[1,2,3]
T
,β
3
=[3,4,a]
T
线性表示.
将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
为求解,应将[α
1
,α
2
,α
3
:β
1
,β
2
,β
3
]化成虚线左边出现三阶单位矩阵的形式. 解一 当a=5时,经初等行变换得到 [α
1
,α
2
,α
3
:β
1
,β
2
,β
3
]→[*] 故 β
1
=2α
1
+4α
2
一α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
—2α
3
. 解二 设[β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]G,则 G=[α
1
,α
2
,α
3
]
-1
[β
1
,β
2
,β
3
]=[*] 因而 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]G=[α
1
,α
2
,α
3
][*] =[2α
1
+4α
2
一α
3
,α
1
+2α
2
,5α
1
+10α
2
—2α
3
], 即 β
1
=2α
1
+4α
2
一α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
—2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/4jV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
证明:用二重积分证明
设A是m×n阶矩阵,若ATA=O,证明:A=O.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
随机试题
有关鼻泪管叙述正确的是
患者,男,50岁,排尿过程中突然尿流中断,疼痛剧烈,改变体位后又可排尿,应考虑
葡萄糖注射液需检查
沪东公司为增值税一般纳税人,2011年2月初,“固定资产”账户借方余额3000000元,“累计折旧”账户贷方余额500000元,2月未发生固定资产增减变动,2月计提固定资产折旧10000元,其中生产车间固定资产折旧6000元,公司行政管理部门固定资产折旧4
车船税纳税义务发生时间为取得车船所有权或者管理权的当月。
在代位权的诉讼中,债权人胜诉的,诉讼费由()承担。
DanielleSteel,America’ssweetheart,isoneofthehardestworkingwomeninthebookbusiness.Unlikeotherproductiveauthors
下列各句中,划线词语使用恰当的一项是()
下列给定的程序中,函数fun的功能是:计算并输出k以内最大的10个能被13或17整除的自然数之和。k的值由主函数传入,若k的值为500,则函数的值为4622。请改正程序中的错误,使它能得出正确的结果。注意:不要改动main函数,不得增行或删行,也不得更
TheworldofmusicwillneverbethesamesincetheformationofabandinLiverpool,Englandin1956.TheBeatleswereformedb
最新回复
(
0
)