首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
admin
2014-01-26
45
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明方程组的系数矩阵A的秩r(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中 [*] 则有 A(α
1
-α
2
)=0,A(α
1
-α
3
)=0. 则 α
1
-α
2
,α
1
-α
2
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
, α
2
,α
3
线性相关,矛盾). 所以 n-r(A)≥2,即4-r(A)≥2→r(A)≤2. 又矩阵A中有一个2阶子式[*]=-1≠0,所以r(A)≥2. 因此 r(A)=2. (2)因为 [*] 又r(A)=2,则 [*] 对原方程组的增广矩阵[*]施行初等行变换: [*] 故原方程组与下面的方程组同解 [*] 选x
3
,x
1
为自由变量,则 [*] 故所求通解为 [*],k
1
,k
2
为任意常数.
解析
[分析] (1)根据系数矩阵的秩与基础解系的关系证明;(2)利用初等变换求矩阵A的秩,确定参数a,b,然后解方程组.
[评注] 本题综合考查矩阵的秩、初等变换、方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖.这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.
转载请注明原文地址:https://kaotiyun.com/show/4m34777K
0
考研数学二
相关试题推荐
[2010年]设存在正交矩阵Q使QTAQ为对角矩阵.若Q的第1列为求a,Q.
[2018年]下列函数中,在x=0处不可导的是()
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(07年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
甲、乙同居多年后决定结婚并在民政局进行了登记,则下列说法正确的有()。
患儿女性,7岁。近6个月来双眼睑下垂。近日来发现复视,晨轻晚重。双眼的外展、内收困难。肌电图示肌肉动作电位的幅度很快递减。其重症肌无力类型是患儿女性,7岁。系眼肌型重症肌无力。近2周来发热、呛咳,应用静脉滴注林可霉素(洁霉素)和庆大霉素后,出现呼吸困
肝硬化出现全血细胞减少的主要原因是
生态工业的发展将促进()模式的建立。
下列关于自然经济的表述,正确的有()。
下列对银行体系货币创造功能的描述,不正确的是( )。
Aspeopleinrichcountriesknowverywell,eatingtoomuchfoodandburningtoolewcaloriesiswhyasubstantialnumberofus
下列说法中,正确的是
建立孩子自尊心的最好方法是尊重孩子,把孩子当作和自己完全平等的人来对【166】。当父母尊重孩子的时候,他开始尊重自己,进而他会尊重别人。这样他的“人化”过【167】才能启动。建立孩子自尊心的第二个重要的方法是无条件地爱孩子。当父母无条件地爱孩子的【168】
A、 B、 C、 A
最新回复
(
0
)