首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
admin
2014-01-26
61
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明方程组的系数矩阵A的秩r(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中 [*] 则有 A(α
1
-α
2
)=0,A(α
1
-α
3
)=0. 则 α
1
-α
2
,α
1
-α
2
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
, α
2
,α
3
线性相关,矛盾). 所以 n-r(A)≥2,即4-r(A)≥2→r(A)≤2. 又矩阵A中有一个2阶子式[*]=-1≠0,所以r(A)≥2. 因此 r(A)=2. (2)因为 [*] 又r(A)=2,则 [*] 对原方程组的增广矩阵[*]施行初等行变换: [*] 故原方程组与下面的方程组同解 [*] 选x
3
,x
1
为自由变量,则 [*] 故所求通解为 [*],k
1
,k
2
为任意常数.
解析
[分析] (1)根据系数矩阵的秩与基础解系的关系证明;(2)利用初等变换求矩阵A的秩,确定参数a,b,然后解方程组.
[评注] 本题综合考查矩阵的秩、初等变换、方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖.这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.
转载请注明原文地址:https://kaotiyun.com/show/4m34777K
0
考研数学二
相关试题推荐
(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于【】
(2007年)设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2).
(07年)设函数f(χ,y)连续,则二次积分f(χ,y)dy等于【】
(1987年)某商品的需求量x对价格p的弹性η=一3p3,市场对该商品的最大需求量为1(万件),求需求函数.
[2016年]设函数f(x)连续,且满足求f(x).
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(92年)设3阶矩阵B≠O,且B的每一列都是以下方程组的解:(1)求λ的值;(2)证明|B|=0.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
随机试题
原位癌的特点是
大卫是美国公民,2005年在中国旅行期间认识孟某,二人在美国结婚,并一直生活在美国。2009年大卫和孟某在中国法院提起离婚诉讼。根据我国《涉外民事关系法律适用法》的有关规定,他们结婚手续、结婚条件以及离婚分别适用哪国法律?()
货主或者其代理人应当在动植物、动植物产品和其他检疫物进境前或者进境时持输出国家或者地区的( ),向进境口岸出入境检验检疫机关报检。
一家美国公司有一笔应付账款必须在6个月后付给一家日本公司,同时还有一笔应收账款也要在6个月后由另外一家日本公司支付。这家美国公司在以下哪种情况下不会存在交易风险?
下列可作为投资性房地产的项目有()。
二审法院根据当事人上诉和案件审理情况,对上诉案件作出相应裁判。下列各项中,符合法律规定的有()。
房地产广告预算中的其他费用是指与广告活动有关的公共活动经费、管理费等费用,占广告费用总额的()左右。
根据企业破产法律制度的规定,下列债务中,在清偿破产费用和共益债务后,应从破产财产中按第一顺位获得清偿的是()。
一个关系数据库文件中的各个元组()。
Accordingtoasurvey,whichwasbasedontheresponsesofover188,000students,today’straditional-agecollegefreshmenare"
最新回复
(
0
)