首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
已知非齐次线性方程组 有3个线性无关的解. (1)证明方程组的系数矩阵A的秩r(A)=2; (2)求a,b的值及方程组的通解.
admin
2014-01-26
86
问题
已知非齐次线性方程组
有3个线性无关的解.
(1)证明方程组的系数矩阵A的秩r(A)=2;
(2)求a,b的值及方程组的通解.
选项
答案
(1)设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中 [*] 则有 A(α
1
-α
2
)=0,A(α
1
-α
3
)=0. 则 α
1
-α
2
,α
1
-α
2
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
, α
2
,α
3
线性相关,矛盾). 所以 n-r(A)≥2,即4-r(A)≥2→r(A)≤2. 又矩阵A中有一个2阶子式[*]=-1≠0,所以r(A)≥2. 因此 r(A)=2. (2)因为 [*] 又r(A)=2,则 [*] 对原方程组的增广矩阵[*]施行初等行变换: [*] 故原方程组与下面的方程组同解 [*] 选x
3
,x
1
为自由变量,则 [*] 故所求通解为 [*],k
1
,k
2
为任意常数.
解析
[分析] (1)根据系数矩阵的秩与基础解系的关系证明;(2)利用初等变换求矩阵A的秩,确定参数a,b,然后解方程组.
[评注] 本题综合考查矩阵的秩、初等变换、方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖.这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.
转载请注明原文地址:https://kaotiyun.com/show/4m34777K
0
考研数学二
相关试题推荐
(2007年)将函数展开成x一1的幂级数,并指出其收敛区间。
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(99年)设生产某种产品必须投入两种要素,χ1和χ2分别为两要素的投入量,Q为产出量;若生产函数为Q=2χ1αχ2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
(11年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
[2017年]已知方程在区间(0,1)内有实根,求常数k的取值范围.
设A=。(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
随机试题
我国《收养法》规定,不满________周岁的未成年人可以被收养。()
重度子宫脱垂病人,手术后护理内容包括( )。
原方用法要求药后“多饮暖水”的是
患者男性,25岁,车祸大出血,需急诊手术,但无法取得患者意见又无家属或者关系人在场.医疗机构应如何处理
消化道分布有丰富的腺体,其中唾液腺主要包括
甲企业为增值税小规模纳税人,2016年11日购入一台生产用机器设备,取得普通发票60万元,税额为10.2万元,支付安装费,取得普通发票价款2万元,税O.22万元,计算甲该企业所得税计税基础的下列算式正确的是()。
组织策略是学习和记忆新信息的重要手段,下列活动中,学生运用组织策略的有()
材料(大意):2013年5月24日晚.网友“空游无依”发了一条微博,称他在埃及卢克索神庙的浮雕上看到有人用中文刻上了“丁锦昊到此一游”。“空游无依”表示.这是他在埃及感到最难过的一刻,简直无地自容。微博发出后,在社会上引起了轩然大波。至
由“十字军东征”这一事件评述东西方关系。
A、Onlyhumansrespondtoemotionsbysheddingtears.B、Onlyhumansshedtearstogetridofirritatingstuffintheireyes.C、On
最新回复
(
0
)