首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
admin
2022-11-10
71
问题
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
选项
答案
∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx等价于∫
0
1
f
2
(x)dx∫
0
1
xf(x)dx≥∫
0
1
f(x)dx∫
0
1
xf
2
(x)dx,等价于∫
0
1
f
2
(x)dx∫
0
1
yf(y)dy≥∫
0
1
f(x)dx∫
0
1
yf
2
(y)dy,或者∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy≥0,令I=∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy,根据对称性,I=∫
0
1
dx∫
0
1
xf(x)f(y)[f(y)-f(x)]dy,2I=∫
0
1
dx∫
0
1
f(x)f(y)(y-x)[f(x)-f(y)]dy,因为f(x)>0且单调减少,所以(y-x)[f(x)-f(y)]≥0,于是2I≥0,或I≥0,所以∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/4nC4777K
0
考研数学三
相关试题推荐
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微;p(t),φ’(t)连续,且φ’(u)≠1.求
设D=是正定矩阵,其中A,B分别是m,n阶矩阵.记P=(1)求PTDP.(2)证明B一CTA-1C正定.
用文氏图和几何概率解释两个事件A与B相互独立的含义.
设由流水线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品。销售每件合格品获利,销售每件不合格品亏损。已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零
设α1,α2,…,αn是n个n维列向量,已知齐次线性方程组α1x1+α2x2+…+αnxn=0只有零解,问齐次线性方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0是否有非零解?若没
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去间断点?
求内接于椭球面的长方体的最大体积.
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
(2020年)春明公司为上市公司,最近一期期末经审计的净资产为10亿元,最近3个会计年度实现可分配利润合计为1200万元。春明公司拟发行可转换公司债券。公司相关部门拟定“初步发行方案”如下:(1)拟发行5亿元人民币可转债,债券期限为自发行之日起6年;
下列哪一项不是胎儿畸形超声检测的线索:
在后前位胸片上哪一叶的肺不张最易显示不清。
“治崩三法"是指
按现行营业税法的规定,可以享受减免税优惠的有()。
政治镇压职能,是指警察使用暴力,对威胁统治阶级的政治统治与国家安全的政治势力实行镇压。( )
A、 B、 C、 D、 A此题可用排除法。观察左图可知,长方体侧面应为黑白相间,由此可排除B、C、D项,故选A。
ThestateofWashington,(which)enteredtheUnion(in1889),(was)named(forhonor)ofPresidentGeorgeWashington.
Feld,theshoemaker,wasannoyedthathishelper,Sobel,wassoinsensitivetohisreveriethathewouldn’tforaminuteceaseh
VancouverTextileCorporation246MadisonStreet
最新回复
(
0
)