首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
admin
2022-11-10
74
问题
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
选项
答案
∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx等价于∫
0
1
f
2
(x)dx∫
0
1
xf(x)dx≥∫
0
1
f(x)dx∫
0
1
xf
2
(x)dx,等价于∫
0
1
f
2
(x)dx∫
0
1
yf(y)dy≥∫
0
1
f(x)dx∫
0
1
yf
2
(y)dy,或者∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy≥0,令I=∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy,根据对称性,I=∫
0
1
dx∫
0
1
xf(x)f(y)[f(y)-f(x)]dy,2I=∫
0
1
dx∫
0
1
f(x)f(y)(y-x)[f(x)-f(y)]dy,因为f(x)>0且单调减少,所以(y-x)[f(x)-f(y)]≥0,于是2I≥0,或I≥0,所以∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/4nC4777K
0
考研数学三
相关试题推荐
求a,b及可逆矩阵P,使得P一1AP=B.
设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
若x→0时与xsinx是等价无穷小量,试求常数a.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)(1+y2)dx=(arctany-x)dy;(Ⅲ)y’+2y=sinx;(Ⅳ)eyy’-=x2(Ⅴ)(Ⅵ)(x2-3y2)x+(3x2-y2)=0;
设f(x)在[a,b]上二阶可导,且f’’(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2x2+…+knf(xn).
设圆锥体的底半径R由30cm增加到30.1cm,高H由60cm减少到55cm,试求圆锥体体积变化的近似值.
证明下列恒等式:
问λ为何值时,线性方程组有解,并求出解的一般形式.
设xOy平面上有正方形D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0xS(t)出(x≥0).
随机试题
鉴别消化性溃疡和慢性胃炎的最好方法是
鹿茸中有抑制单胺氧化酶(MAO)活性的是
根据劳动合同法律制度的规定,下列劳动争议中,劳动者可以向劳动仲裁部门申请劳动仲裁的有()。(2011年)
2014年3月,甲科研所与乙企业签订一份设备改造的技术服务合同,约定自2014年7月1日至12月1日,甲科研所负责对乙企业的自动生产线进行技术改造。合同签订后,乙企业为履行合同做了相关准备工作。5月,甲科研所通知乙企业,因负责该项目的技术人员辞职,不能履行
如果D注册会计师要证实丁公司在临近2008年12月31日签发的支票是否已登记入账,最有效的审计程序是()。
下列哪项不是学生评价标准确立的基本形式?()
持有哪种“伤残证书”,可在乘坐火车时享受购票减价待遇?()
在一大学,50%的学生是新生;新生的1/5到经济管理学院注册,经济管理学院新生中的30%是国际金融专业,问国际金融专业的新生数占全校学生总数的百分之几?
Woman:Wally,thenecklaceisbeautiful,butreally,youshouldn’thave!Man:You’rewelcome.Ithinkitlooksbeautifulonyou.
Forwhomisthemessagemostlikelyintended?
最新回复
(
0
)