设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.

admin2022-11-10  52

问题 设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.

选项

答案01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx等价于∫01f2(x)dx∫01xf(x)dx≥∫01f(x)dx∫01xf2(x)dx,等价于∫01f2(x)dx∫01yf(y)dy≥∫01f(x)dx∫01yf2(y)dy,或者∫01dx∫01yf(x)f(y)[f(x)-f(y)]dy≥0,令I=∫01dx∫01yf(x)f(y)[f(x)-f(y)]dy,根据对称性,I=∫01dx∫01xf(x)f(y)[f(y)-f(x)]dy,2I=∫01dx∫01f(x)f(y)(y-x)[f(x)-f(y)]dy,因为f(x)>0且单调减少,所以(y-x)[f(x)-f(y)]≥0,于是2I≥0,或I≥0,所以∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.

解析
转载请注明原文地址:https://kaotiyun.com/show/4nC4777K
0

最新回复(0)