首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫01xf2(x)dx/∫01xf(x)dx≤∫01f2(x)dx/∫01f(x)dx.
admin
2022-11-10
48
问题
设f(x)在[0,1]上连续且单调减少,且f(x)>0.证明:∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
选项
答案
∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx等价于∫
0
1
f
2
(x)dx∫
0
1
xf(x)dx≥∫
0
1
f(x)dx∫
0
1
xf
2
(x)dx,等价于∫
0
1
f
2
(x)dx∫
0
1
yf(y)dy≥∫
0
1
f(x)dx∫
0
1
yf
2
(y)dy,或者∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy≥0,令I=∫
0
1
dx∫
0
1
yf(x)f(y)[f(x)-f(y)]dy,根据对称性,I=∫
0
1
dx∫
0
1
xf(x)f(y)[f(y)-f(x)]dy,2I=∫
0
1
dx∫
0
1
f(x)f(y)(y-x)[f(x)-f(y)]dy,因为f(x)>0且单调减少,所以(y-x)[f(x)-f(y)]≥0,于是2I≥0,或I≥0,所以∫
0
1
xf
2
(x)dx/∫
0
1
xf(x)dx≤∫
0
1
f
2
(x)dx/∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/4nC4777K
0
考研数学三
相关试题推荐
求a,b及可逆矩阵P,使得P一1AP=B.
设函数z=f(u),方程确定u是x,y的函数,其中f(u),φ(u)可微;p(t),φ’(t)连续,且φ’(u)≠1.求
作函数y=x+的图形.
设f(x)在[1,+∞)内可导,f’(x)<0且=a>0,令an=-∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
设α1,α2,…,αn是n个n维列向量,已知齐次线性方程组α1x1+α2x2+…+αnxn=0只有零解,问齐次线性方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0是否有非零解?若没
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
向半径为r的圆内投掷一随机点,假设点一定落入圆内,而落入圆内的任何区域的概率只与该区域的面积有关且与之成正比.试求:(1)落点到圆心距离R的分布函数F(x);(2)落点到圆心距离R的密度函数f(x).
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
随机试题
德育方法中的说服法包含参观、访问和调查等方式。
电子控制汽油喷射发动机燃油供给装置的结构、电路控制方式不同,当出现供油压力过低或不供油故障时,一般先检查()。
图a,b两种状态中,梁的转角φ与竖向位移δ间的关系为()。
A.血液中查到细菌,机体无中毒症状B.血液中可查到病毒C.细菌毒素进入血液,并出现中毒症状D.血液中大量细菌,并有严重中毒症状E.血液中大量化脓菌,并有多器官栓塞性小脓肿病毒血症
A使甲状腺泡上皮萎缩、减少分泌B使甲状腺组织退化、血管减少、腺体缩小变韧C抑制甲状腺过氧化酶,从而抑制甲状腺激素的生物合成D对甲状腺激素代谢无作用,仅能改善甲状腺功能亢进症状E摄取碘提高,摄碘高峰前移普萘
烧伤感染细菌的主要入侵途径为
初次大量注射异种动物免疫血清后,经7~14天,患者出现局部红肿、皮疹、关节肿痛、淋巴结肿大、发热及蛋白尿等症状。此现象可能由下列哪种机制引起
下列不属于房地产心理定价策略的是()。
短语可以由多个词组成,也可以由多个短语组成。()
下列选项中允许用户监控各种系统资源的是( )。
最新回复
(
0
)